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CHAPTER 1
INTRODUCTION

Advanced fiber-reinforced composite materials such as
boron/epoxy and graphite/epoxy have been successfully
empioyed as structural materials in aircrafts, missiles and
space vehicles in recent years, and the performance of these
composites has shown their superiority over metals in
app!ications requiring high strength, high stiffness as: well
as iow weight. The advantages of these composites, however,
are overshadowed by their relatively poor resistance to the
impact loadings, which has prevented the application of
these materials to turbine fan bladings. Many other reports
deaiing with the responses of advanced composites to various
types of impact have further increased the need for a better
understanding of the problem so that the survivability of

these composites can be improved.

it 1is obvious that impact produces damage and

consequently reduces the strength of composite materials.

The damage modes usually include local permanent
deformations, breakage of fibers, delaminations, etc..
Whiie the cause of these damages are still unknown and may

not be simple in nature, in general, the impact of a soft

object could give a longer contact duration, and the dynamic
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response of the whole structure is of importance. The hard
object impact usually gives a short contact time and results
in the initial transmisson of impact energy into a local
region of the structure. This initial energy will propagate
into the rest of the structure in the form of stress waves.
Far field damage away from the impact area could result from
the reflection of stress waves. It is generally agreed that
the cause of the sudden failure must be examined from the

point of transient wave propagation phenomena.

Flexural waves induced by dynamic loads in laminated
composites are more complicated than those in homogeneous
and isotropic plates due to the anisotropic and
nonhomogeneous properties in the laminate. Moreover,
because of the low transverse shear modulus in fiber
composites, the effect of transverse shear deformation
becomes significant and should be considered in the
formulation. In Chapter 2, the laminate theory which
inciudes the transverse shear deformation effect is
reviewed, and harmonic waves in a graphite/epoxy laminated
plate are studied. The propagation of wave front which, for
a given time after Iimpact, bound the stressed region

surrounding the impact point, is also investigated.

A survey of wave propagation and impact in composite
materials has been given by Moon [1]. Many analytical [2-
5], numerical [6-7] and experimental [8-10] methods have

been employed to study the transient impact problems. The




respone of a laminated plate can be analyzed using these
methods provided the applied load history is prescribed.
Howaver if  the dynamic load results from an impact of an
object on the laminated plate, then the resuiting contact
force must be determined first. An accurate account of the
con:zact behavior becomes the most important step in

analyzing the impact response problems.

A classical contact law between two elastic spheres was
derived by Hertz [11]. When letting the radius of one of
the spheres go to infinity, one obtains the contact law
between an elastic sphere and an elastic half-space. Many
authors have used the Hertzian contact law for the study of
impact on metals and composites [12-13]. Recently, Yang and
Sun [14] performed statical indentation tests on graphite/
epo:ty composite laminates using‘spherical steel indenters of
difFerent sizes and found that the Hertzian law of contact
was not adequate. In particular, they found that
sighificant permanent indentations existed and that the
unloading paths were very different from the Jloading path.
Noting that energy dissipation takes place during the
process of impact, Yang and Sun [14] suggested that this
energy is responsible for the local damage of the target
materials. The unloading curves and permanent indentations
obtained from the statical indentation tests may provide a
useul information in estimating the amount of damage due to

impact since this energy is simply the area enclosed by the




loading—unloading curves. In this study, similar statical
indentation tests were conducted and the results are

presented in Chapter 3.

Wang [15] has performed a number of impact tests on
graphite/epoxy laminated beams and plates. [t was shown
tha: the strain responses calculated using finite element
method and the statically determined contact laws from [14]
agreed with the experimental measurements quite well. This
indicates that the statical indentation law is reasonably
adequate in the dynamical Iimpact analysis. It was also
sugqgested that the contact force should be measured
experimentally to provide an additional basis for comparison
with the finite element solution which could allow further
evaluation the applicability of the contact laws Iin impact
analysis. Chapter 4 describes an impact experiment on
graphite/epoxy laminated plate using an Impact-force
transducer with a spherical steel cap as the impactor. The
contact force history and strain responses at various points
on the plate were measured by means of the transducer and
surface strain gages, respectively, and were compared with
the predictions of finite element analysis using the

statically determined contact law.

Chapter 5 summarizes the results obtained in Chapter 2, 3

and 4.




CHAPTER 2

STRESS WAVE IN A LAMINATED PLATE

A laminated plate theory which includes the effects of
transverse shear deformation and rotatory Iinertia was
developed by Yang, Norris and Stavsky [16] in a way
suggested by Mindlin [17] for homogeneous isotropic plates.
It was shown that the frequency curves for the propagation
of harmonic waves In an infinite two—-layer isotropic plate
in plane strain agreed with the predictions of the exact
solution obtained from theory of elasticity very well. A
similar laminated plate theory was developed by Whitney and
Pagano [18] and was employed in the study of static bending
and vibration for antisymmetric angle-ply composite plates
with particular layer properties. It was found that the
effect of shear deformation can be quite significant for
composite plates with span-to-depth ratio as high as 20.
Good agreement was also observed in numerical results for
plate bending as comparing with exact solutions of
elasticity. In this study, the laminate theory developed by
Whitney and Pagano was used for' its simplicity yet quite
satisfactory in describing the harmonic wave propagation

[19].




2.1 Laminate Theory with Transverse Shear Effects
2.1.1 Lamina Constitutive Equations

A laminated plate of constant thickness h consists of a
number of thin laminas of unidirectionally fiber-reinforced
composite perfectly bonded together. Each lamina, whose
fiber may orient in any arbitrary direction, can be regarded
as a homogeneous orthotropic solid. Consider a typical k-th
lamina. A coordinate system (X,, X3, Xg) is chosen in such
a way that the x,—x, plane coincides with the midplane of
lamina, and x, and X, axes are parallel and perpendicular to
the fiber direction, respectively. If a state of plane
stress parallel to the x;-x, plane is assumed, then the in-

plane stress-strain relations are given by

k k
049 Qi1 Q12 O €11

0ozt = [Q12 Q22 O €22 (2-1)
Tq2 0 0 Qes| V12

The transverse shear stress-strain relations are given by

k k

{723} [Q44 0 ]{723}
= (2"2)
T3 0 Qss ) V13

in which




Q4 = Eq/(1-v 2v,4)
Qaa = Eo/(1-v4,vV24)

Qo = Vq2E2/(1=vy2va4) = v Eq/(1-vyv2,)

Qss = Gy ' ' (2-3)
Qss = Gas
Qss = G5

are the so-called reduced stiffnesses, where E, G and v are
Young's modulus, shear modulus and Poisson's ratio,
respectively, and subscripts 1 and 2 denote the directions

parallel to x, and x, axes, respectively.

The coordinate system for an arbitrarily oriented lamina
does not, in general, coincide with the reference axes
(x,y,z) of laminated plate (see Figure 2.1). Using the
coordinate transformation laws for stress and straih, we
obtain the stress-strain relations in laminate reference

system as

k k
[0 x| Q14 Q12 Q46 O 0 T[exx]
Oyy Q12 Q22 Q26 0 O €yy
17xvf = |Qe Q26 Qs O O [{7xyg (2-4)
Tyz O 0 O TQas Qas||Yy:
[Tz 0 0 0 Qas Qss] 9kl

in which Q,; are given by

Qi1 = Qi ym*+2(Qq 2+2Qg 6 IM?N2+Q, ,n*




(X;,X»X3) — Lamina Reference Axes

(X,Y, Z) —Laminate Reference Axes

Figure 2.1 Lamina reference axes and laminate reference
axes
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Qa2 = Q1 4n%+2(Q; 2+2Qg s )IM2N24+Qy,m*

Qi2 = (Qq1+Q22-4Q6)M2N24+Q, 5, (M*+n%)

Qie = (Q11-Q12-2Qee)M®N+(Q; 2=Q22+2Qg ¢ )MN3

Qoe = (Qy1-Q412-2Qe e )MN3+(Qy 2—Q22+2Qg s )M®N (2-5)
Qes = (Qq1+Q22-2Q;2-2Q66)M2N2+Qg s (M*+n*)

Qsa = QaaMm?+Qggn?

Qus = (Qgq—Qgs5)mMn

Qss = Qq4n?+Qssm?

where

m = cosf n sin@

and 6 is the angle between x—axis and x;~axis measured from

X to x, counterclockwise as shown in Figure 2.1.

2.1.2 Plate Strain-Displacement Relations

The displacement components of the laminated plate are

assumed to be of the form [16]

ulx,y,z) = ut(x,y) + z¢,(x,y)
vix,y,z) = v0(x,y) + z¢,(x,y) (2-6)
wix,y,z) = wl(x,y) = wix,y)

where u®, v° and w® are the midplane displacement components
In the x—, y- and z-directions, respectively, and ¢, and ¢,
are rotations of cross-sections perpendicular to x- and y-

axis, respectively (see Figure 2.2). In Equation (2.6) we
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~<——Initial Configuration of Normadl
TN } to Midplane

)

W o e

%

Deformed Contiguration of Normal

Figure 2.2 Laminate displacement components for a cross-
section perpendicular to the y-axis
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have assumed that u and v vary linearly in the thickness

direction, while w Is constant through the thickness.

The strain components for a point in k—th lamina of the
laminated plate with a distance z from the midplane can be

computed as

exxk = exO t ZK,
k — ¢ O
ey = €,% + zk,
Yy k= ¥y, 0+ ZKy, (2-7)

Y, % = dw/dy + 9v/dz = dw/dy + ¢, = ¥,,°

Yoo ¥ = 0w/9x + 9u/dz

ow/ax + ¢, = ¥,,°

vY,% = 9u®/ox
¥,° = av®/dy (2-8)
Yy %= 3u®/8y + 9v°?/dx

are the in-plane strain components of midplane, and

K, = 0¢,/0x
kK, = 9¢,/9x (2-9)
Kyy= 0¢,/0y + 9¢,/0x

are the rotation gradients.

In Equation (2-7), since w, ¢, and ¢, are independent of
z, it follows that the transverse shear strains are constant

through the thickness of the plate.
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Equation (2-7) can be written in concise matrix form as

K
€x 1 exo K x
k sy €,° Ky 0
€ € K
= <yxv } = <—yxv0> + zinvr = + z (2—10)
4 ¥ 0]
Yy Yy 2° 0
Yz YVyz® o |

Thus, the stralin components at any point in the plate can be
determined from the extensional strain components of the
midplane, the rotation gradients of the plate and the

distance z from the midplane.

2.1.3 Stress-Resultants and Laminate Constitutive Equations

Substitution of Equation (2-10) in Equation (2-4) gives

the stress components for a point in the k-th lamina as:

’Gxx1k Qys Qi2 G1s 0 O J[[ex® K x

|9y Q12 Q22 Q26 O 0 €y° Ky

17«yt = Qe Q26 Tes O O [{19xv°F * Z9kxyfr (2-11)
Tyz 0 0 O Q4a Qas Yy2° 0

(T x 2. 0 0 0 Qss Q55_~~VXZOA [0

The stress-resultants acting on a laminate can be
obtained by integration of the stresses in each lamina

through the laminate thickness. Specifically, the in-plane
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stress-resultants are given by

k
NX UXX UXX
N ne d § - d (2-12)
= a g -
v Imlz vy [92 k=1 Ihk_1 vv[9®
NXV yXV TXV
the stress couples are given by
k
MX UXX UXX
M ne d § . d (2-13)
= = g -—
Y f_h/2 gyy 24z K24 J‘hk—1 vy [49Z
Mxy yxv 7MXV

Q Ty, N h Ty,
{ '} - [ { " }dz -3 | { ’ }dz (2-14)
Q-x hi2 Txz k=1 hk"1 Txz

The sign convention for these stress-resultants along
with the geometry of a typical N-layer laminated plate are

shown in Figure 2.3.

Substituting Equation (2-11) into the right hand sides of
the above three equations and performing the :integrations,

we obtain
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et
N (o]
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My Aoy Qu

v L L
Y y Midplane

z
(a) STRESS RESULTANTS OF A LAMINATE

(b) GEOMETRY OF ANN-LAYER LAMINATE

Figure 2.3 Stress-resultants and geometry of a typical
N-layer laminate
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L Aryr Ara Arsl[ex® ] Byq Bya Byg][xx |
‘Nv r = A12 A22 A26 1 eyo -+ B12 822 st 4K’V f (2—15)

0
Are Azs AgellVxy | [Bi1e Bae Besl l&xy.

1M = B12 822 825 1 evo -+ D12 D22 D25 ‘K.v t (2_16)

(2-17)

o —
o QO
x <
[
Il
e
> >
* *
P L3
o o
» P
* *
44} >
ot L]
[ |
oot —
< L
X <
N N
[

where

h/2

(A1;,Bi5.Dip) = [°0;,(1,2,2)dz 1,] =1,2,6 (2-18)

and

hr/72 . .
A¥ ;= J'-hlzqi_jdz i,J = 4,5 : (2-19)

Equations (2-15) through (2-17) are wusually written

symbolically as

N A B O €®
Mt = |B D O K (2-20)
Q 0 0 A*|lY

which is the laminate constitutive equation with transverse

shear effect included.
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2.1.4 Plate Equations of Motion

The stress—equations of motion for the k-th lamina are

given by

Tuxsx + Txy’v t Txzsz = PU

Txysx + Tyyry + Tyzsz = Pv (2"21)
Txzx + TVZ’V T 02252 F PW
where p is the mass density. Integrating Equation (2-21)

through the thickness of laminate and then substituting

Equation (2-12), (2-14) and (2-8) in, we obtain

Ne,x + Nyeysy = PU° + R3,
PU° + R, (2-22)

It

NXV’X + NV’V

stx +Qy)y +q=PW

where q is the normal traction on the plate. Multiplying
the first two equations of Equation (2-21), integrating
through the thickness of laminate and then substituting

Equations (2-13), (2-14) and (2-5) in, we obtain

Mysx + Myysy = Qx = RUC + [,
. (2-23)
Myysx + My,y, = Qy = RVe + 14,
in which P, R and I are defined as
h/72
(P,R,1) = f p(1,2,22)dz (2-24)
-h/ 2

Equations (2-22) and (2-23) are the plate equations of
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motion. Substitution of Equation (2-20) and then the
strain—-displacement relations In these two equations yield
the equations of motion in terms of midplane displacements

and rotations of the plate.

A graphite/epoxy laminated plate provided by NASA Lewis
Research Center was used throughout this study. This
laminate is a [0°/45°/0°/-45°/0°],¢ graphite/epoxy composite
with 0.0053 inch ply thickness and the following ply

properties [15]:

E, =17.5 X 10%® psi.

E, =1.15 X 10% psi.

Gia = Gy = Gp = 0.8 X 108 psi. (2-25)
Via = 0.30

p = 0.000148 lb-sec?/in*

For symmetrically laminated composite plate, B;; = O and
R = 0. In addition, by choosing the x—axis of the laminate
reference system to coincide with the 0° fiber direction, we
obtain A;¢ = A, = 0 and D, = Dyg. Further, in this study,
we assume G,5; = Go5 = G,,, and consequently, A*;s = 0 and
A* 44 = A* . For this particular laminate, the

displacement—equations of motion are given by

A,,92U%/3x2 + Aggd2u®/ay? + (A, + Agg)d2v®/dxdy = PU°

|

(Aya + Agg)d2U®/0x3y + Aggd2v0/0x2 + Ay,82v0/dy2 = PYO
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D1182¢x/6x2 + 2D1562¢x/axay + Dssaz¢x/ay2
+ D, (82¢,/0x2 + 02¢,/8y2?) + (D42 + Des)d?¢,/3x3y
CA%, . (3w/3x + ¢,) = Ly (2-26)

D15(62¢x/6x2 + 8¢x/6y2) + (D12 + Dss)az¢x/6x6y
+ Dged2¢,/0x2 + 2D, ¢02¢,/0xdy + D,0%¢,/0y?

'—A*44(GW/ay + ¢y) = I$y

A*, . (92w/0x? + 02w/dy? + 99,/3x + 8¢,/9y) + q = Pw

In Equation (2-26), the first two equations govern the
in-plane motion while the last three equations govern the

flexural motion.

2.2 Propagation of Harmonic Waves

Consider a Infinitely large laminated plate governed by
the equations of motion (2-26). We assume plane harmonic

waves in the form

u® = U explik(n = ct)]
vl = V explik(n - ct)]
w =W explik(n - ct)] (2-27)
¢, = &, explik(n - ct)]
¢, = &, explik(n - ct)]

propagating over the plate, where u, v, w, %, and &,6 are

constant amplitudes, k is the wave number, ¢ is the phase
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velocity and 7 is.given by
n =X cosa + Yy sinu (2-28)

in which «o 1is the angle between the direction of wave

propagation and x-axis.

Substitution of Equation (2-27) into Equation (2-26) with
g = 0 yields a system of five homogeneous equations for the
five constant amplitudes. In order to have a nontrivial
solution, the determinant of the coefficient matrix is set
equal to zero. Since the equations are uncoupled into two
groups, the determinantal equation can be seperated into two

equations as
lai;| =0 (2-29)
for the in—-plane extensional and in—plane shear waves, and
by =0 (2-30)

for the flexural waves. In Equations (2-29) and (2-30) the

coefficients a;; and b;; are given by

a;q4 = A cos?a + Aggsin?a — Pc?
812 = @zq = (A5 + Agg)sinacosa (2-31)

a.,, = Aggcos?a + A,,sin?a — Pc?
and

b,y = D,y k2cos?a + 2D,ck?sinacosa + Dggk?sin?a

+ A*44 - Ik2C2
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b,s = byy = Dyegk2cos?a + (Dy, + Dgglk?sinacosa
+ Dygk?sin?x
b13 = b31 = iA*44kcosa (2“32)

b, = Dgegk2cos?a + 2D, gk?sinacosa + D,.k2sin?%a

+ A%, - Ik2c?
bza = b32 = iA*44kSina

b33 = -A*44k2 + Pk2C2

Expanding Equation (2-29) we obtain a quadratic equation

in c? as
c? - dyc?2 +d, =0 (2-33)
where
d1 = (A11C0$2d + AzzSinza + ASG)/P
(2-34)
A, ,cos2a + Agegsin?a (A,, + Agg)sinacosa
d2 =

(A,, + Agg)sinacosa  Aggcos?a + Ajpsin?a

It is noted that the phase velocity ¢ does not depend on
the wave number k, thus these waves are nondispersive. In
studying of transverse impact problem where in-plane
deformation is negligible, this nondispersive property has
no significant effect. Should in-plane deformation become

important, higher order approximation of displacement
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components u and v must be assumed and the dispersive

property of these in-plane waves could be included.

From Equation (2-34) it is evident that there exist two
phase velocities corresponding to two modes of wave.
Although these two waves involve both in-plane extensional
deformation as well as in-plane shear, from the. eigenvectors
we are able to tell which one is dominant. Thus we label
the two waves as in—-plane extensional wave and in-plane

shear wave accordingly.

The determinantal equation given: by Equation (2-30)
yields three positive roots 1in c¢? indicating that three
flexural waves exist. These phase velocities are functions
of the wave number k, thus they are dispersive. Among these
three modes of wave, only the lowest one corresponding to
the transverse shear wave has a finite wvelocity as k-0 or as
the wave length becomes infinite. The dispersion curves for
the waves of the lowest mode propagating in the directions
of 0°, 45° and 90° respectively are plotted in Figure 2.4
with the non-dimensional phase velocity vs. the non-
dimensional wavelength A/h. It can be seen that they all
approach the value of JET;75 as the wavelength becomes
shorter. The phase velocities for the two higher modes,
however, approach different values in different propagation
directions when A-0O. For laminated composite which are
anisotropic in general, the phase velocity varies from one

direction to another. As a result the wave surface will
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Figure 2.4 Dispersion curves for plane harmonic waves
propagating in the 0°- 45°- and 90°-
directions
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become a rather complicated shape as it propagates. This

will be discussed in the next section.

Substitution of w = kc in Equation (2-32) yields a set of
frequency equations for flexural waves. Figure 2.5 shows
the frequency curves of these waves for a = 0°, 45° and 90°,
respectively, with the non-dimensional frequency vs. the
non-dimensional wavelength. The cutoff frequencies for the
two higher modes have a value of’JT§6727;7h. Comparing with
the exact cutoff frequency (n/h)VG,s/p, it can be seen that
if the shear correction factor n2/12 is introduced, this

theory will predict the correct cutoff frequency.

2.3 Propagation of Wave Front

Impact of foreign objects on a laminated plate with a
very short duration could generate weak shock waves which
will propagate Into the rest of the structure with finite
velocities, and the positions of the wave fronts define the
regions being disturbed at any instant after impact.
Damages to the laminated plate may possibly occur as the
first wave front hits the weakest part. It 1is hence
important to investigate the propagation of these shocks in
the plate. There have been works dealing with the
propagation of wave front in anisotropic elastic media [20-
22]. Moon [23] presented an analysis of wave surfaces in a

laminate by treating it as an equivalent homogeneous
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Figure 2.5 Frequency curves for flexural waves
propagating in the 0°- 45°- and 90°-
directions
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orthotropic plate. The acceleration waves and their wave
fronts were Investigated. The propagation of shock waves In
more general laminates which exhibit the bending-extensional
coupling were studied by Sun [2]. The ray theory was
employed to construct the wave front surface. The growth
and decay of the shock strength were also discussed. In
this section, the analytical procedures developed by Sun [2]
were applied on a [0°/45°/0°/-45°/0°],5  graphite/epoxy

laminated plate.

2.3.1. Kinematic Conditions of Compatibility on the Wave

Front

A wave front, which will be denoted by Q, Is defined as a
surface travelling over the plate as time varies
continuously, and across which there may exist a
discontinuity in the stress, particle velocity and their

derivatives.

Consider a discontinuous surface 0 passing some
observation point in a medium at a certain time t. Let f~
be the value of a field function f(x;,t) (e.g. stress,
particle velocity, etc.) behind the: surface 1, and f* be
the value of f in front of it, then the discontinuity of

function f can be expressed as

[fl = & - f~ (2-35)
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in which the right hand side is to be evaluated at the time
and location on Q passing the observation point, and the

jump across the wave front is denoted by square bracket.

Surface 0 may be expressed mathematically by an equation

of the form

U(x,;,t) =0 (2-36)
or, by making t explicit, as

U(x,,t) = F(x;) -t = 0 (2-37)

which represents a family of surfaces in x;-space with t as
a parameter. By evaluating F* and f~ at t = F(x;), the jump

of f across the wave front becomes
[F(X,)] = F+(X3,F(Xi)) - f:_(xi,F(Xi)) (2-38)

The rate of change of [fl for an observer moving with Q

is given by
d[fl/dt = (8f*/dx; - af~/08x;)dx,;/dt + (af*/8t — df~/at)
= ¢, [af/8x,;] + [38f/at] (2-39)
where t = F(x;) is substituted, and ¢; = dx;/dt are velocity

components of wave front relative to the material.

If the laminate theory introduced in previous section s
used, then the plate displacement components are u®, vo, w,
¢, and ¢,, while the spatial variables are X, = X and X, =

Y. It is assumed that the Integrity of the material is not
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affected by the propagation of the stress wave front, then
these displacement components will remain continuous.

Consequently, we have
[u°] = [v°] = [w] = [¢,] = [¢,] =0 (2-40)

across the wave front. Applying the general condition of
Equation (2-39) on u®, together with Equation (2-40), we

obtain
[6u°/6xJ]cJ + [u°] =0 Jj=1,2 - (2-41)

Let ¢, and n; be the normal velocity and the unit normal

on the wave front, respectively, it follows that
n;c; = Cn (2-42)
and Equation (2-41) becomes
[8u®/8x;] = -[U°]n;/cn J=1,2 (2-43)

Similar relations can be derived for the other
displacement components v®, w, ¢, and ¢,. Together they
specify the kinematic conditions of compatibility on the

wave front.

2.3.2 Dynamical Conditions on the Wave Front

Consider a finite volume V of &a material medium and
denoted by S the boundary or surface of V. For a continuous

and differentiable function f(x;,t) inV, it can be shown
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[23] that

d ; - -
d--fj"vf(x,,t)dv = fvf,tdv + J‘sefds (2-44)

under deformation of the medium, where G is the normal
velocity of the surface S. In the case where the
deformation of the volume V s determined solely by the

motion of material particles, we have
G = (Jini = (J'n (2_45)

where u; is the displacement components, n; is the outward
normal on S, and U, is the normal velocity of material
particle on S. If there exists a discontinuity surface (or
wave front) travelling with velocity c; in the medium, by

choosing this surface as the boundary of V, we have
G = c;n; = Cn (2—46)
where ¢, is the normal velocity of wave front.

Suppose that a volume V whose motion is determined by the
deformation of the material medium, is divided by a
travelling surface Q into two volumes V- and V* as shown in
Figure 2.6. The surface S is also divided into two portions
S- and S* which form parts of the boundaries of V™ and V',
respectively. The remaining part of the boundary is formed
by 0, which [Is a segment of . In Figure 2.6, n; denotes
the uhit normal of N in the direction of travelling, and n; *

denotes the unit outward normal of S.




Figure 2.6 A deformed volume V divided by a travelling
surface 1
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Taking f = pu; in Equation (2-44) and using equation (2-
45) and (2-46), we obtain

é%prﬂ?dv = fw(PQT),ng'+ fyﬁ;pﬁ?ds + fmcnpu;dﬂ (2-47)

L[ putav = [ (o), cav + [ GipUids - [ capitan  (2-48)

where U7 and U} are the velocity components of material
particle in V-~ and V*, respectively. Combining the above

two equations gives
d o - . ._.-..!, SRR
dtfvpu,dv fv(pu;),tdv + f?gppu,ds + Iyunpu,ds

+ fmcnp(OE - ﬂT)dQ (2-49)

From theory of elasticity we have

L[ pusav = [ oiinjas . (2-50)

If we let the volume V approach zero at a fixed time in such
a way that it will pass Into o, then the volume integral in

Equation (2-49) will evidently approach zero; however

[ arputas ~ - [ utputdn E (2-51)
8+ So .
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J‘ anpuids - f UspuTd (2-52)
s= o

[oisnas = [ (ot; - o7)n,dn (2-53)

where o¢7; and ¢}; are the stress components on the sides of

Ny, respectively.

Substituting Equations (2-50)  through  (2-53) into

Equation (2-49) gives

HIFE Su T o I = s -Us - ¥} o -
Im(aiJ 07 ;)n;d0 J\mpu,(cn un)dn _fmpu,(cn ulyda (2-54)

Using [o;;]1 and [U;] to represent the jumps of stress and
particle velocity across the wave front, and utilizing the

fact that ¢, >> U,, we obtain

Jln [U'J]anﬂ = - Inopcn[U,]dQ (2_55)

Since this condition is independent of the extent of the

surface integration Q,, it follows that
[o,;In; = - pcnlU;] (2-56)
In the case of laminated plate, i = X,y,z and J = X,Y.

Substitution of Equation (2-6) into Equation (2-56)

yields
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[o,;In; = = pcallU®] + z[¢,1}
[dzjan = - PCn{[VO] + Z[éy]} (2-57)
[os;1n; = = pcalWl

Integrating Equation (2-57) over the thickness of plate

gives
IN,In, + [N, In, = — Pc, [U°] — Renlé,l
[Nxv]nx + [Ny]ny = = Pcn[vol - ch[éy] (2-58)
[0.1n, + [Q,In, = — Pcalw]

Multiplying the first two equations of Equation (2-57) by z
and then integrating over the thickness, we obtain two more

equations

- Rea[U°] - Icalé,]

It

M, In, + M, In,
M, In, + [M,In, = = Renlv] - lcal[®,]

(2-59)

where P, R and 1 have been defined in Equation (2-24)

The five equations given by Equations (2-58) and (2-59)
are the dynamical conditions on the wave front for the

laminated plate.

2.3.3 Propagation Velocity of the Wave Front

Across the wave front, the laminate constitutive

relations given by Equation (2-20) can be written as
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[N] A B 0 ]fLel
[MIt = |B D O [«] (2-60)
[Ql 0 0 A*|LlIv]
where
{IN1}T = {IN,1,IN,T,IN,, 1}
{IM1}T = {IM,],IM,],IM,,]} (2-61)
{[Q1}7 = {I[Q,],[Q,]1}

are the jumps of the stress resultants, and

{[e1}T = {[du°/ax1, [av°/ay]l, [8u®/ayl+[av°/ax]}
{[k1}7 = {[0¢,/3x1,[d¢,/8y), [0¢,/8yl+[8¢,/0x]} (2-62)
{[v1}T = {[ow/ayl, [ow/0ox]}

are the jumps of the strain components. In Equation (2-62),

the conditions [¢,] = [¢,] = O are substituted.

Substituting of Equation (2-43) and the similar relations
for other kinematic variables in Equation (2-60), we can
express the jumps of the stress resultants in terms of the
jumps of the time derivatives of the displacement components
u®, v°, w, ¢, and ¢,. These relations are then substituted
in Equations (2-58) and (2-59), which results in five
homogeneous equations. For [0°/45°/0°/-45°/0°] ;5 graphite/
epoxy laminated plate which Iis symmetrical and balanced
(l.e. By, =0, Ajg = Ay = 0, R =0 and Dyg = Dz¢), these

five equations are uncoupled into three: groups as
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[u°l

[a|J]{ } = (2—63)
[vel

{[éx]}

[b;;] =0 (2-64)
[¢,]

(A*44 - PCn2)[W] =0 (2-65)

in which [a;;] and [b;;]1 are both two by two symmetric

matrices, and their entries are given by

ayq = N PAgq # ny?A¢s — Pcn?
A2 = Aosq = nxnv(A12 + Ase) (2—66)

g = nx2A56 + nv2A22 - PCn2

b11 = nx2D11 + 2nxnyD15 + nszss - ICn2
b12 = b21 = D15 + nxhv(D12 + Dss) (2_67)

bzz = nxzDss + 2nxnyD13 + nv2D22 - ICn2

It can be seen that Equation (2-63) describes the in-
plane extensional and the in-plane shear wave fronts,
Equation (2-64) describes the bending moment and the
twisting moment wave fronts and Equation (2-65) describes

the transverse shear wave front.

From Equation (2-65), we obtain the normal velocity with

which the transverse shear wave front propagates as
an = A*44/P (2—68)

It is noted that this velocity Is independent of the

direction of propagation, and is called directionally
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isotropic wave front.

Equations (2-63) and (2-64) yield non-trivial solutions
only if the determinant of the coefficients matrices vanish,

i.e.
la;;| =0 (2-69)

Each of the above equations can be expanded into a
quadratic equation of c¢n2. For [0°/45°/0°/-45°/0°%] 5 ¢
graphite/epoxy laminated plate, the normal velocities of
wave fronts corresponding to the in—-plane modes and flexural
modes are plotted in Figure 2.7 and 2.8, respectively. It
is noted that the normal velocities of the in—-plane
extensional and in-plane shear modes are symmetrical about
x-axis and y-axis, while there is no such symmetry for the

bending moment and twisting moment modes.

2.3.4 Wave Surface and Ray

From Figure 2.7 and 2.8, it can be seen that for
laminated composites which are anisotropic in general, the
in-plane and flexural wave fronts travel with different
normal velocities in different directions. In other words,
the initial shape of a wave surface will be distorted after

it propagates. However, Equations (2-66) and (2-67) show




IN-PL ANE
SHEAR/

IN-PLANE
EXTENSIONAL

P 3450

Li2/P

Figure 2.7 Normal velocities of in-plane wave fronts

36




37

BENDING
MOMENT
TWISTING
MOMENT
[ N P S S W =
' {Gi2/P
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that for any fixed normal direction n,, ¢, Is a constant.
Connecting the points having the same unit normals to the
travelling wave front surface, we obtain a family of lines
which are called rays. Thus, along a ray, the normal
velocity of wave front remains unchanged. By using the ray
theory which has been well established in the field of

geometrical optics, we are able to construct the wave front

surface.
Recall Equation (2.37)
F(x;) —t=0 1 =1,2 (2-37)

which represents a family of wave fronts propagating over

the plate with t as a parameter. It follows that

dF/dt = (8F/ax;) (dx;/dt) = (aF/ax;)c; =1 (2-71)
By putting

Equation (2-71) becomes

pic; =1 (2-73)

Since p; is normal to the surface F, it can be written as

p: = |pil ni (2-74)

where |p;| denotes the length of p;. Combining (2-73) and

(2-74), we obtain
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lpi|nici = |pilen =1 (2-75)

from which we obtain
p; = n;/cn (2-76)

In Equation (2-76), p; is called the slowness vector
which has the direction normal to the wave front with the

magnitude being equal to the inverse of normal velocity ci,.

Subsitituting Equation (2-76) in Equation (2-69) and (2-

70), we obtain two equations in terms of p;

Px2Ayq + py2Age — P PxPy(Ar2 + Age)

PxPy(Ay2 + Agg) Px2Ass + Py2Aza — P

Pyx2D4+2p,pyD1etpy2Dse—! D;e+PxPy(D12+Dgs)

Dys+PxPy(D42tDgs) Px2Dse+2pxPyD1e+pPy2D22-1

which can be written in a general form as
glp;) =0 1 =1,2 (2-77)

In view of Equation (2-72), we recognize that Equation
(2-77) may be regarded as a set of first-order partial
differential equation for F. A standard method of solving
first-order partial differential equation is by means of
characteristics [24], which reduces the equation to a system
of first-order ordinary differential equations. In our

case, Equation (2-77) then is equivalent to the following




40

dx/ds = d8g/dp, dy/ds = 38g/dp, ' (2-78)
dp,/ds = -8g/dx  dp,/ds = —-3g/dy (2-79)
where s is a parameter. These equations,together with

Equation (2-77) describe the ray geometry and the normal

'éirection of the wave front propagating along the ray.
From Equation (2-78), we have
dy/dx = (8g/dp,)/(8g/0p,) (2-80)

Since the normal direction of wave front along a ray is
constant, it can be seen from Equation (2-76) that p; is
also constant along a ray. For laminated composite which is
assumed to have homogeneous material properties, Equation
(2-77) shows that g(p;) does not depend on X;, consequently,
dg/dp, and 8g/dp, are all constants along a ray. Thus, the

solution of Equation (2-80) is then given by
y = ${x = Xo) + Yo (2-81)

where x, and y, are the initial values of x and y at t = O,
and ¢ = (3g/dp,)/(dg/d8p,). This equation shows that the

rays In a homogeneous solid are straight lines.
From Equations (2-73) and (2-77), we have
c;dp; = O (2-82)

dg = (dg/dp;) dp; = O (2-83)
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Eliminating dp; from these equations yields
dx;/dt = ¢; = (38g/8p;)/(p;089/3py) (2-84)
where summation over j is understood.

Equation (2-84) can be solved to obtain the position of
wave front at time t. Again, since 3g/dp; and p; are all

constant along a ray, we obtain the solution of Equation (2-

84) as
x = (9g/9p,)t/(p;8g/3p;) + Xo (2-85)
y = (3g/d8p,)t/(p;98g9/8p;) + Yo (2-86)

where x, and y, denote the initial wave position at t = O.
Consider at t = 0, a wave front forms a circle given by

Xo = h coso
(2-87)

Yo = h sina
At this instant, the normal directions to the wave front
coincide with the radial directions. Due to the different
velocities of propagation in directions, this initial shape
would be distorted. By using Equations (2-85) and (2-86),
the subsequent positions of the wave front can be
determined. Figures 2.9-2.12 show the wave front positions
at two consecutive instants after t = O for the in—-plane
extensional, in-plane shear, bending moment and twisting

moment modes, respectively, for the [0°/45°/0°/-45°/0°],¢
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graphite/epoxy laminated plate. It is noted that for
symmetrical laminates, the in—-plane modes are uncoupled from
the bending modes. The rays along which the normal
directions to the wave front are 0°, 45° and 90°,
respectively, are also shown in the figures. It is seen
that the wave fronts of the in-plane extensional and the in-
plane shear modes possess symmetry with respect to Xx-—axis
and y-axis. The wave fronts of the bending and twisting
moments, however, lose their original symmetry with respect
to x—axis and y-axis. This is an indication that in
performing analysis of flexural deformation  of this
laminate, one can not take a quadrant for analysis, a
practice followed by many authors dealing with homogeneous

and isotropic plates.

From Figures 2.9-2.12, it is also interesting to note
that ray geometries for these two groups of wave fronts are
quite different. For the in—plane extensional and in-plane
shear wave fronts, the rays coincide with the normal
directions when o = 0° and 90°. Along other directions, the
direction of the ray deviates from the normal direction of
the wave front. It was discussed in [2] that the degree of
spreading of rays is proportional to the decay of the stress
amplitude at the wave front. Thus, from Figures 2.9 and
2.11, one can conclude that the strength of the in-plane
extensional and bending moment wave fronts decay more

rapidly in the y-direction than in the x-direction.




43

20

|
o
T

-20

-20

-15  -10 -5 @) S IO 15 20
x/h
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A photoelastic study of anisotropic waves In a fiber
reinforced composite has been done by Dally et al. [o].
The waves was produced by a explosive charge in a small hole
on the plate. The result showed clearly an elliptic-like
stress wave front pattern. This indicates that stress waves
in anisotropic materials propagate with different velocities

in different directions.
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CHAPTER 3
STATICAL INDENTATION LAWS

A brief introduction of the historical development on
Impact problem involving homogeneous isotropic materials was
.given by Goldsmith [12]. Hertz [11] was the first to obtain
‘é satisfactory solution on contact law for two (isotropic
ﬁelastic spherical bodies. When letting the radius of one of
the spheres go to infinity, this law then describes the
contact behavior between a sphere and an elastic half-space.
The Hertzian law, in spite of being static and elastic in
nature, has been widely applied to impact analyses where
permanent deformations were produced. The use of this law
beyond the elastic limit has been justified on the basis
that it appears to predict accurately most of the impact

parameters that can be experimentally verified.

In studying impact responses of laminated composites, the
problem becomes extremely complicated. One may easily
realize that the Hertzian contact law which was derived
based on homogeneous isotropic materials may not be adequate
in describing the contact behavior of laminated composites
due to their anisotropic and nonhomogeneous properties.
Moreover, most of the laminated composites have finite

thickness which can not be represented by a half-space. In
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many existing analytical works [25], loadings to the
laminates were assumed known, and the responses of the

laminates were assumed elastic.

Willis [26] obtained explicit formulas for Hertzian
contact law for transversely isotropic half-space pressed by
a rigid sphere, and extended it to the application of impact

problems. It was shown that
F = ka" (3-1)

with n = 3/2 is valid for the contact force F and the
indentation a«, where k is a contact coefficient whose value
depends on the material properties of the target and the

sphere, and the radius of sphere.
A modified contact law with

172
Rs

k = (4/3) | (3-2)

was used [13] in an analytical study on impact of laminated
composites. In Equation (3-2), Rs,¥vs and Es are the radius,
Poisson's ratio and Young's modulus of the sphere,
respectively, and E; is the Young's modulus of the laminates
in thickness direction. It was also suggested by Sun et al.

[27] that the value of k can be experimentally determined.
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Recently Yang and Sun [14] have conducted static
indentation tests on the [0°/45°/0°/-45°/0°%] 3¢ graphite/
epoxy laminates using spherical steel indenters of 0.25 in.
and 0.5 in. diameters. The results were fitted into
Equation (3-1) and were found that the 3/2 power is valid.
In addition, it was also observed that even for small
amounts of load there  were significant permanent
indentations. This implies that the unloading curve has to
be different from the loading curves. In order to account

for the permanent deformation, the equation

o - Uo\?
F =Fm (——————— (3-3)
dm - ao

proposed by Crook [28] was used to model the unloading path
where Fn, is the contact force at which unloading begins, 0Om
is the indentation corresponding to Fm, and a, denotes the
permanent indentation in an unloading cycle. Equation (3-3)

can be rewritten as

F=s(ax - a)° (3-4)
in which

s = Fm/(0m — 0o) ¢ (3-5)
is called unloading rigidity. In order to simplify the

model ing of the unioading law, it was assumed [14] that the

value of s for all the unloading curves remains the same.
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Consequently, a constant o, given by
oa., = k/s (3-6)

was introduced. It was also shown that g=5/2 fitted the
unloading path very well, and the permanent indentation &g
was then related to on by

0o/0m = 1 — (e /am)2/® as tm > dcr

(3-7)
oy = 0O as om < Ocr

The value of «., was found to be independent of the size
of the indenter and hence can be regarded as a material

constant.

It was also mentioned in [14] and [29] that there were
some practical difficulties in performing the tests. Since
the indentation was measured step by step using a dial gage
and readings on the gage were taken about 10 to 20 seconds
after the load was increased by one step, the creep effect
may cause an appreciable error to the results. Another
important problem was that it was almost Iimpossible to
measure the permanent indentation accurately using the dial
gage. In order to overcome these problems, a Linear
Variable Differential Transformer (LVDT) was used in this

study to measure the indentation.

The LVDT is an electromechanical transducer that produces

an electrical output proportional to the displacement.
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Connecting this output and the one from the strain indicator
: jWhich .is used to measure the applied loading to a X-Y
jplqtter, one can obtain a continuous loading-unloading
j;éurQe. By changing the loading rate which can be applied as
;;fast"as 50 1b./sec., it s possible to examine the
téignfficance of creep effect on the contact law. The
‘gtarting point and final point of a loading-unloading cycle,
WHTch represent respectively the instants of contact and
Asépafation of the indenter and the specimen, can be easily
détérmined from the curve. Thus, the measurements of
permaﬁent indentations are much more accurate than those

using the dial gage.

3.1 Specimens and Exper imental Procedure

Two groups of test specimens were prepared from a [oo/
45°/0°/-45°/0°],5 graphite/epoxy laminate. They were cut in
the way such that the longitudinal axis of the beam specimen
of the first group was parallel to the 0° fiber direction
while the. second one was perpendicular to it. The latter
then becomes [90°/45°/90°/-45°/90°] 5 laminated beams. The
thickness of the beam was 0.106 in. and the width was
approximately 1.25 in.. In all tests, the specimens were
clamped at both ends. It was shown in [14] that the span of
the specimen in the range of 2 in. to 6 In. has little
effect on the contact law. Hence, only one span, i.e. 2

in., was used in the test.
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The experimental set-up is shown schematically In Figure
3.1. LVDT was mounted on a 'C' bracket fixed to the loading
piston so that only the relative movement between the
indenter and the specimen was recorded. The load was
applied pneumaticallt by a plunger and .it was measured using
a load cell and a strain indlicator. Outputs from LVDT and
strain indicator were fed into an X-Y plotter so that a
continuous force-indentation curve can be obtained. Two
spherical steel indenters of diameters 0.5 in. and 0.75 in.

were used.

3.2 Experimental Results
3.2.1 Loading Curves

The experimental curves were first digitized into some

discrete data points and then fitted into Equation (3-1)

using least—squares method. Figures 3.2 and 3.3 show the
test data and the fitted curves for 0.5 in. diameter
indenter. It can be seen from these figures that the 3/2

power index gives very good results. However, the contact
coefficient k of [0°0/45°/0°/-45°9/0°],5 specimen is less than
the one of [90°/45°/90°/-45°/90°],s specimen by about 7 %.
During the test, larger deflections were observed for the
second group of specimen due to their lower flexural
rigidity. This means that the contact area is also larger

and the indentation under same amount of loading should be
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smal ler comparing with the first group of specimens.
Consequently, the higher value of k for the [90°/45°/90° /-

45°/90°],5 specimens is reasonable.

The results for 0.75 in. diameter indenter are presented
in Figures 3.4 and 3.5. Again, good agreement between the
exper imental data and fitted curves indicates that the 3/2
power index for loading law is valid. The values of k for
both indenters are summarized in Table 3.1. It should be
noted that the average value of k obtained from the two
groups of specimens was used later in a finite element

analysis of impact responses.
3.2.2 Unloading Curves

By choosing a suitable value for g, it can be seen from
Equation (3-5) that once the relation between «, and on is
established, the unloading rigidity s 1is then determined.
Test results show that the permanent indentations &, and the
corresponding maximum indentations am exhibit a rather

linear relationship. The equation given by
oo = s, (am — o) (3-8)

is obtained from the test data for both:0.5 in. and 0.75
in. indenters using least-squares fitting method, énd are
plotted in Figure 3.6. In Equation (3-8), «, can be
considered as a critical value of indentation. Once the
amount of indentation exceeds «,, permanent deformation will

occur.
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Table 3.1

Contact coafficient k of loading law F = ka'®

Size of

| Indenter(in) 0.5 0.75
Specimen Group 1% Group 2% Group 1% Group 2t
k(1b/in"®) 1.284x10% |1.376x10% |1.833x10° {1.990x10°
Average k | 1.330x10% 1.912x108
Ref.[14] 9.694x10°%

+ [09/45°/0°/-45°/0°%],, specimens

1 [90°/45°/90°/-45°/90°],, specimens

60
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Substltution of Equation (3-8) and (3-1) into Equation

(3-5) yields
kdma /2
s = if am 2 O (3-9)
[(1 = sp)0m + Sp&plF
kamalz
s = if am < Op (3-10)
om9

These two equations along with Equation (3-4) are then used

to fit the experimental unloading curves in finding the

value of q.

Yang [14] has shown that q = 2.5 fits the test results
for both 0.25 in. and 0.5 in. indenters quite well. In
this study, however, the values of 2.2 and 1.8 were found to
give the best fitting for 0.5 in. and 0.75 in. indenters,
respectively using the aforementioned method (Figures 3.7-
3.10). For convenience, q = 2.5 was used for 0.5 in.
indenter while g = 2.0 was chosen for 3/4 in. indenter.
The results of the curve-fitting are presented in Figures
3.11-3.14. Further discussions on the unloading law will be

given in Section 3.3.
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3.2.3 Reloading Curves
The equation
F=ky (¢ = ag)P (3-11)

suggested by Yang [14] was used to model the reloading
curve, where k; is called reloading rigidity and p = 3/2 was
found to fit the experimental data quite well. It was also
observed that the reloading curve always returns to where
the unloading began, and hence the reloading rigidity can be

determined by
k1 = Fm/(am - (!o)3/2 (3"'12)

In other words, the reloading test is not necessary provided
the unloading condition is specified. Some reloading curves
obtained following Equations (3-11) and (3-12), and the

experimental data are presented in Figures 3.15-3.18.

3.3 Discussion

As mentioned before, due to creep the loading rate may
affect the contact law (i.e. the value of k). A series of
tests with different loading rates was performed to examine
this point. The maximum loading rate the test equipment can
apply without exceeding it's capacity is about 50 lb/sec..
It was found that in the range of 5 lb/sec. to 50 Ib/sec.,

the values of k showed very little scatter, and the effect
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due to local material nonhomogeneity in the composite may be
even greater than the one due to the loading rate. However,
an appreciable decrease of the value k was observed when the
loading rate was lower than 1 lb/sec.. In some extreme
cases where loadings were applied as slow as 10 Ib/min., the
average value of k for 0.5 in. indenter was very close to
the one obtained previously by Yang [14] using dial gage to
measure the ‘*indentation. In this study, the loading rates

for all tests were approximately equal to 10 Ib/sec..

Unlike the exponent n of the loading law for which the
value of 3/2 seems to yield good agreement with all
experimental data, the exponent gq of the wunloading law
(Equation 3-3 or 3-4) reveals much wider deviation for
different sizes of indenter. Value of g = 3/2 corresponding
to an elastic recovery according to the Hertzian theory was
previously used by Crook [28] in a study of impacts between
metal bodies. The experimental results from [14] and
present study show that the value of q varies from 1.5 to
2.5. Local plastic deformation, anisotropic properties of
composite material and unloading rate are all possible
causes for this deviation. Obviously, an analytical study
to determine the value of g as function of aforementioned
factors is Iimpracticable. Since the purpose of this study
is to establish a contact 1law that can be used in the
analysis of impact, the validity of this law must be

verified from impact experiment. This will be investigated
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in the next chapter.

From Equation (3-3) or (3-4), it can be seen that ag
plays an essential role in the unloading law and hence the
value of it must be estimated accurately. Both of Equation
(3-7) used by Yang [14] and Equation (3-8) wused in this
study for calculating o, were obtained experimentally, in
which a.,. and «, are considered to be material constants and
were determined using oy and am from test data. However, it
was pointed out in [14] that the values of a, might not be
the true permanent indentations. They were the values which
could make the power law given by Equation (3-4) fit the
total data under the unloading path. In fact, the load
corresponding to the value of o, = 3.16x10"2 in. obtained
in [14] is about 200 lb. for 0.5 in. indenter, which is
apparently too high. The value of a, = 6.564x10"% in.
obtained in this study, which corresponds to about 20 1b of
loading, seems more reasonable as a critical wvalue in
indentation. For compar ison, the relations between
unloading rigidity s and maximum indentation am uUsing
Equation (3-7) with a., = 3.16x107% in. and Equation (3-8)
‘with o, = 6.564x107% in., respectively, are plotted in
Figure 3.19. It is interesting to see that these two
equations give almost the same values of s up to am = 4x10-3
in. which is approximately the maximum indentation before
failure could occur to the specimen. The advantage of using

Equation (3-7) for the formulation of thz unloading law is
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that the value of s is constant for any om once the the
indentation passes «.,., and only one unloading test is
necessary to determine o.,. provided the load is high enough
to produce permanent indentations. The use of Equation (3-
9) needs performing many tests to obtain a proper relation
between o, and o, according to Equation (3-8). However, it
should be noted that Equation (3-7) is valid only if g = 5/2
is used in the unloading equation (3-4), while Equation (3-

8) has no such restriction.
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CHAPTER 4
IMPACT EXPERIMENTS

High velocity impacts usually result in very small
contact time and the material under impact loadings may
behave differently from static contact due to the strain
rate effect. The statically determined contact laws
presented in the previous chapter thus must be verified
experimentally before it can be applied to the impact
analysis. Wang [15] has conducted many impact experiments
on Iaminatéd composite beams and plates using spherical
steel balls as Impacters. The strain response histories at
various points on the specimens were recorded and compared
‘with the finite element analysis with which the contact laws
obtained by Yang [14] was incorporated. The results showed
that the test data agreed with the predictions using the
statical indentation laws quite well. In this chapter, an
attempt wa§ made to measure the contact force directly so
that the applicability of statical contact laws in impact

analysis can be further evaluated.
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4.1 Experimental Procedure

A 6 in. by 4 in. laminated plate cut from a [0°/45°/0°/-
45°/0°],5s graphite/epoxy panel was used as' the impact
target. The 0°-direction was arranged to parallel the long
side of the plate. Seven strain gages: (Micro Measurement
Company TYPE EA-13-062 AQ 350) were placed at different
locations as shown in Figure 4.1 to record the dynamic
strain histories. One of the gages was placed on the
surface directly opposite to the impact point to trigger the
oscilloscope. This plate was hung with two strings at two

corners to achieve the free boundary condition.

The projectile was made of an impact-force transducer
with a spherical steel cap of 0.75 inch in diameter glued on
the impact side and a steel rod of 5/8 inch in diameter
glued on the other side as shown in Figure 4.2. It was then
attached to a thin rod to form a pendulum which could
produce Iimpact velocities up to 150in/sec. The total mass

of the projectile is 0.000181 lb-sec?/in .

The schematic diagram for this impact experimental set-up
is shown in Figure 4.3. Signals from gages and transducer
were amplified by a 3A9 Textronix amplifier and displayed on

the screen of an oscilloscope.
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Figure 4.1 Laminate dimension and strain gage locations
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(a) Impact~-Force Transducer

Figure 4.2 Graphical

illustration of
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Spherical Cap
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(b) Projectile

impact projectile
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4.2 Calibration of Impact-Force Transducer

The Iimpact—-force transducer used was Modal 200A05

0N

marketed by PCB Piezotronics Inc. Some of it'
specifications are shown in Table 4.1 [30]. The structure
of this transducer contains two thin quartz disks operating
in a thickness compression mode and sandwiched between
hardened steel cylindrical members. A built-in amplifier
can reduce the high impedance of the voltage from the quartz
element and provides an output voltage which can be read out
on oscilloscope, recorder, etc.. The impact force is then

computed using the equation,
F = VF/CF (4_1)

where Vy is the output voltage and cg¢ is the sensitivity of
the transducer. Since the value of ¢ In Table 4.1 was
obtained under quasi-static condition [30], it must be
verified under impact condition first so that later the

results from impact experiment can be correctly interpreted.

A circular cylindrical steel rod of 2 inch in diameter
and 1.19 inch long hung on strings was used as the impact
target to callbrate the transducer. The acceleration of the
rod was measured by using a Model 302A accelerometer which
was mounted on the end of the rod opposite to the impacted

end as shown in Figure 4.4. The total weight of the target

is 1.105 1b.




Table 4.1

Specifications for Model 200A05 Impact-Force Transducer

85

Range, Compression
(5V output)

Maximum Compression

Resolution (200 uV p-p noise)

Stiffness
Sensitivity

Resonant Frequency
(no load)

Rise Time

Discharge Time Constant
(T.C.)

Low-Frequency (-5%)
Linearity,B.F.S.L.

Output Impedance
Excitation (thru C.C.diode)
Temperature Coefficient
Temperature Range

Shock (no load)

1b.
1b.
1b.
1b/uin
mV/1b

Hz

usec

sec
Hz

%

ohms
VDC/mA
%/°F
oF

g

5,000
10,000
0.2
100
1.0

70,000
10

2,000
0.0003
1

100

+18 to 24/2 to 20

0.03

-100 to +250

10,000
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Using Equation (4-1) and

a=V,/c, (4-2)

F = ma (4-3)
we obtain

cg = (c/m)(Ve/V,) (4-4)

where V., and c, are the output voltage and the sensitivity
of the accelerometer, respectively, a is acceleration of the

target, and m is the mass of the target.

When impacting a metal projectile on a metal target with
no pad on the impact surface, a high frequency ringing can
be seen at the output of the transducer. In order to obtain
smooth output curves, a soft pad was placed on the impact
region of the target to eliminate the high frequency
ringing. The cause of this ringing phenomenon will be
discussed later. Typical output voltages of transducer and
accelerometer read from the oscilloscope are shown in Figure
4.5. Values of Vp were plotted vs the corresponding values
of V, taken from these two curves at several discrete points
in time and then fitted into a straight line as shown in
Figure 4.6. The slope of this line represents the ratio of
Ve/V, which 1is then substituted in Equation (4-4) to

calculate the sensitivity cg.
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Figure 4.5 Typical output voltages from transducer and
accelerometer
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Assuming the sensitivity of the accelerometer c, is
correct, and using Equation (4-4) and the test data, the
average value of c¢p calculated was 0.494 mV/Ib.. A
comparison with the value of 1.0 mV/lb from Table 4.1 shows
that the test result has more than 50% error. However,
since the quartz elements are located at the center of the
projectile while the impact force is applied at the end, we
were not certaln that the force history picked up by the
quartz elements did represent the real history of the impact
force; The following simple analysis was performed to

examine this uncertainty.

Conslider a 1 in. long steel rod with free-free boundary

conditions. For a impulse loading given by
F(t) = Fq EXP[-(t—-7)2/4b2)] (4-5)

at one end, the force history at the midpoint of the rod,
Fn(t), was computed and plotted in Figure 4.7 together with
the applied force history. It should be noted that the
values of F, = 1000 1b., T = 200x107% sec. and b = 40x10~°
sec. were chosen in Equation (4-5) so that the applied
force history is similar to the experimental loading
histroy. From Figure 4.7, it can be seen that Fn(t) is only
about half of the applied force F(t). The average ratio of
Fm(t)/F(t) was obtained to be 0.498, which is very close to
the value of cp obtained previously. The accelerations at

the two ends and the midpoint of the rod were also
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calculated and plotted in Figure 4.8. It shows that the
magnitudes of acceleration at any position of the rod have
virtually no difference. This indicates that the
accelerometer did measure the real acceleration of the
target while the impact-force transducer only picked up the
force history at the point of it's own position. In other
words, the wave motion in the projectile can not be

neglected, hence it must be treated as an elastic body.

Repeating the previous analysis by changing the Impulse

loading of Equation (4-5) to
F(t) = Fosin(mt/b) (4-6)

and letting Fo = 1000 1b. and b = 400x10-¢ sec., we obtain
the force history at the midpoint of the rod as shown in
Figure 4.9. Comparing Figure 4.9 with Figure 4.8, it s
clear that the initial slope of the impulse forcing function
would affect the amplitude of ringing. The steeper the
initial slope is, the higher the amplitude of ringing will
be. When impacting the steel projectile on graphite/epoxy

surface, this ringing phenomenon was also observed.
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4.3 Finite Element Analysis
4.3.1 Plate Finite Element

A 9-node Iisoparametric plate finite element (see Figure
4.10) developed by Yang [31] based upon the laminate theory
of Whitney and Pagano [18] was used to model the dynamic
motion of the laminated plate. At each node there are five
degrees of  freedom. Among them, u, v° and w are
displacement components of mid-plane in the x-,y- and z-
direction, respectively, and ¢, and ¢, are rotations of the
cross—sections perpendicular to the: x- and y-axis,
respectively. For symmetric laminates, the flexural
deformation is uncoupled from the in-plane extensional and
shear deformations, and hence, the degrees of freedom
corresponding to u? and v® can be neglected in the

transverse impact problem.

The isoparametric plate finite element is developed using

the following shape functions:
For corner nodes:

S,=(1/4) (1+£,) (14n0) (£o+ne—1)+(1/4) (1-£2) (1-n?) (4-7)
For nodes at £ = O and n = *1:

S,=(1/2) (1-£2) (no+n?) (4-8)

For nodes at £ = 1 and 7 = O:
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Figure 4.10 9-node isoparametric plate element
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S;=(1/2) (§,+£2) (1-n?) (4-9)

For the center node:

S,=(1/2)(1-£2)(1-n?) (4-10)

In the above shape functions, § and 7 are normal i zed

local coordinates, and

o = &£, No = TN, (4-11)

where £, and n; are the natural coordinates of node i

(Figure 4.10).

Using the shape functions, the plate displacements w, ¢,

and ¢, are approximated by

w

9
Pt = 121 [Su]{qp}l

(4-12)

Py

where {qg,}, Is the nodal displacement vector at node i and

3x3

[S1; = S;[1] (4-13)

The stiffness and mass matrices are obtained by numerical

integration using Gauss quadrature. Following standard

finite element procedures, the system stiffness matrix [K,1]

and mass matrix [M,] are assembled from the element

matrices. The equations of motion are expressed in matrix
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form as

M 1{G,} + [K,l{gp} = {Po} (4-14)
where

{P,}7 = {0,--+,F,+-+,,0} (4-15)

is the force vector in which F is the contact force
associated with the degree of freedom corresponding to the
w—displacement at the impact point. The subscript p in
Equations (4-12) through (4-15) denotes those are quantities

corresponding to laminated plate.

4.3.2 Modeling of Projectile.

In Section 4.2 we showed that in order to interpret the
exper imental transducer response, it is necessary to treat
the projectile as an elastic body. A higher order rod
finite element developed by Yang and Sun [32] was wused to
model the projectile. This element has two degrees of
freedom at each node, namely the axial displacement U and
it's first derivative 0du/dx. It has been shown that this
higher order element is far more superior than the elements
with less degrees of freedom in the analysis of dynamic

problems. The displacement function is taken as

U= a, + asx + agx?® + azx® (4-16)
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where a; are constant coefficients. Solving these
coefficients in terms of the nodal degrees of freedom and

substituting into Equation (4-16), we obtain
u= {N}"{q,}. (4-17)
where
{q, 1.7 = {(u),, (du/dx),, (U)z, (BU/Bx).} (4-18)

is the vector of element nodal degrees of freedom, and

(N}T = {f,(x), Fa(x), Fa(x), Fa(x)} (4-19)
in which

F,(x) = (1 = x/L)2(1 + 2x/L)

Folx) = x(1 - x/L)?

fa(x) = x2/L2(3 - 2x/L)

Fa(x) = x2/L(x/L = 1)

are shape functions. The subscript r in Equation (4-17)

denotes quantities corresponding to the rod.

Using variational principle, the equations of motion for

one element are obtained as
[m.1{4,}e + [k.1{a-}e = {prle (4-20)

where {pr}. 1is the vector of the generalized forces
associated with the nodal degrees of freedom {a,}e, [m. ] is

the element mass matrix whose entries are given by
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L
(m.);; = ijof,dex i,j=1,2,3,4 (4-21)

and [k,] is the element stiffness matrix whose entries are

given by *

L
(k.)i; = EAfofi'FJ'dx i,j=1,2,3,4 (4-22)

In Equations (4-21) and (4-22), p, E and A are mass density,
Young's modulus and cross-sectional area of the projectile,
respectively, and L is the length of the element. The

explicit forms of [k.] and [m.] are given by

[ 36 3L -36 3L ]

EA | 3L 4L2 -3L -L?
kel = — (4-23)

30L |-36 -3L 36 -3L

| 3L -L2 -3L 412
and

[ 156 22L 54 -—13L]

pAL 22 4L2 13L -3L2
[m.] = — (4-24)

420 | 54 13L 156 -22L

|-13L -3L2 -22L. 4L2]

Following the usual manner, the system stiffness and mass
matrices are assembled from the element stiffness and mass
matrices, and the system equations of motion are expressed

as
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M 145} + [K.1{q.} = {P,} (4-25)
 fﬁwhere:L

(P,}T = {F,0,-+,0} (4-26)

in which F is the contact force applied at the impacting end

of the projectile.

ﬁ;4. Results and Discussion

The 6 in. by 4 in. graphite/epoxy laminate was modeled
by'14b (14 x 10 mesh) plate elements while the projectile
was modeled by 20 rod elements (see Figure 4.11). The two
sets of equations (4-14) and (4-25) along with the contact
laws gliven by Equations (3-1), (3-3) and (3-11) were solved
simul taneously. The finite difference method with At = 0.2
usec. was used to integrate the time variable. A coarser
Ffinite element mesh for plate was used and it was found that
the present mesh yielded converged solutions. A 3-
Dimensional analysis using 112 axisymmetric finite elements
to model the projectile was also performed, and the results
showed the the response at the midpoint of the projectile to
have no significant difference comparing with the one

obtained by using rod elements.

An impact velocity of 115 in/sec was used in the
exper iment. Figures 4.12-4.17 show the strain response

histories at the six 1ocations picked up by the strain
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gages. The results obtained using: the finite element
methods and the contact laws are also shown in these
figures. It is evident that the finite element solutions

agree with the exper imental data very well.

In Figure 4.18, the exper imental transducer responses and
the computed transducer responses using finite element are
plotted against time as curve I and curve 11, respectively.

The computed contact force history is also plotted as curve

I11. It can be seen that the magnitudes of curve [ and
curve 11 agree fairly well. The frequencies of ringing for
these two curves, however, are quite different. For the

finite element results, the time interval between 'two
consecutive peaks of ringing is approximately equal to the
time that the longitudinal stress wave needed to travel the
distance between two ends of the projectile. This indicates
that the ringing is simply caused by the transient wave

travelling back and forth in the projectile.

From Figure 4.18 we can see that curve [ has exact 9
peaks in 180 microseconds, and the time interval between two
consecutive peaks is about 20 microseconds. It is noted
that this transducer has a rise time of 10 microseconds (see
Table 4.1), which is the time it needs to reach the max i mum
response. Any input signal with period smaller than twice
of this value will be smoothed out by the transducer, and
the 'output signal may appear to have lower frequency. In

other words, the period of the output signal will be at
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element results
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least 20 microseconds. This might explain the Ilower
frequency of ringing In the output voltage from the

transducer.

The total duration of contact for this impact test is

about 800 microseconds, and multiple contact is also
observed from the test data. Figure 4.19 shows the
exper imental transducer responses and the computed

transducer responses up to 800 microseconds. Although these
two results do not matched very well after the end of the
First contact, it 1is evident that the finite element
analysis does predict the multiple contact phenomenon, and
the calculated total duration of contact is also

approximately the same as the test result.

Figure 4.20 preéents a number of deformed configurations
of the laminated plate after impact. It is seen that at the
point of impact, there is a strong discontinuity in slope of
the transverse displacement indicating the presence of a

significant transverse shear deformation.
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CHAPTER 5
SUMMARY AND CONCLUSION

The laminate theory developed by Whitney and Pagano was
employed for studies of harmonic wave and propagation of
wave front in a [0°/45°/0°/-45°/0°],s graphite/epoxy
laminate. The dispersion properties of flexural waves were
investigated. The wave front surface was constructed using
ray theory. It was shown that due to the anisotropic
properties of composite laminate, the transient wave would
propagate with different velocities in different directions.
The growth and decay of the wave front strength were also

discussed.

The contact laws between 0.5 inch and 0.75 inch spherical
steel indenters and the graphite/epoxy laminate were
determined experimentally by means of a statical indentation
test. Loading, unloading and reloading curves were fitted
into power equations. Linear relation was found between the
permanent indentation and the maximum indentation at
unloading, which is seen to be independent of the size of
indenters. This relation was then used to determine the
coefficient of the unloading law. It was demonstrated that
there was no need to perform reloading experiments once the

loading and unloading laws were established. Test results
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showed loading and reloading curves followed the power |aws
with power indices of 1.5 very well, while the power indices

for unloading curves varied from 1.5 to 2.5.

The statically determined contact laws were incorporated
into an existing 9-node isoparametfic plate finite element
program to study the dynamic response of a graphite/epoxy
laminated plate subjected to impact of a hard object. Ar
impact experiment was conducted to verify the validity of
statical contact laws in the dynamical impact analysis. It
was shown that the strain responses predicted using the
Finite element method agreed with the test results very
well. The contact force history of the impact test was
measured by an impact—force transducer, which was also sean
to match the finite element result in magnitude as well as

contact duration.

The indentation tests have been used ever since the
beginning of the century to determine the static and dynamic
hardnesses of metals in terms of the applied loading, the
size of the indenter, and the chordal diameter of the
permanent indentation [33]. If similar systematic
indentation tests are performed on the laminated composite
materials, then the relations between contact coefficients
and the sizes of the indenters could be determined more

rigorously, and the usefulness of the contact laws could be

further extended.
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As the verification of the contact laws has been |imited
to low velocity impacts in this study, their accuracy under
high velocity impact conditions is not clear. Besides the
contact behavior which may be significantly different from
the static one, the damage induced by waves could be quite
extensive which needs to be included in the analysis. While
the present study tried to establish experimentally contact
laws which can be used in the analysis of Ilow velocity
impact, the damage of laminate due to impact loading has not
been discussed. It is apparent that more work needs to be
done so that the failure mechanism in laminated composites
due to impact <can be better understood. Stress waves
propagating in thickness direction, which may be responsible
for the delamination of laminates, is one of the Iimportant
subjects that should be investigated. Strength and fatigue
life degradations of laminates after impact, which have been
examined briefly by Wang [15], also need more extensive

study.
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APPENDIX
COMPUTER PROGRAM AND USER INSTRUCTIONS

The computer program used in this research was written
following the program by Professor R. L. Taylor [34] with
some necessary modification in order to solve the impact
problems of laminated plates. A brief instruction of the
input data for solving the impact problem specified in
Chapter 4 of this report is given in this apppendix. The
detailed descriptions of data input as well as the macro
instructions for solving various types of problems can be
found in [34]1. The listing of input is shown at the end of

this appendix, followed by the listing of program.

I. Title and control information:
1. Title card-Format(20A4)

Columns Description

1-4 Must contain FECM
5-80 Alphanumeric information to be printed with
output as page header.
2. Control information card-Format(6I5)

Columns Description

1-5 Number of nodes (NUMNP)

6-10 Number of elements (NUMEL)
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11-15  Number of layers (LAYER)
16-20 Spatial dimension (NDM)
21-25  Number of unknowns per node (NDF)

26-30 Number of nodes per element (NEN)
II. Mesh and initial information:

The input of each segment in this part of data Iis
controlled by the alphanumeric value of macros, which must
be followed immediately by the appropriate data. Except for

the END card which must be the last card of this part, tne
data segemnts can be in any order. Each segment is
terminated with blank card(s). The meaning of each macro is
given by the following:

Macro Data to be input

COOR Coordinate data
ELEM Element data
BOUN Boundary condition data

MATE Material data

ROD Initial condition of the projectile
EXPE Experimental indentation laws data
END Must be the last card of this part, terminates

mesh and initial information input.

1. Coordinate data—Format(215,2F10.0)

Columns Description

1-5 Nodal number

6-10 Generation increment
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11-20 X—coordinate

21-30 Y-coordinate

. Element data-Format(1115)

Columns Description

1-5 Element number
6-10 Node 1 number
11-15 Node 2 number
etc.
46-50 Node 9 number

51-55 Generation increment

. Boundary condition data-Format(715)

Columns Description

1-5 Node number

6-10 Generation increment
11-15 DOF 1 boundary code
16-20 DOF 2 boundary code
21-25 DOF 3 boundary code
26-30 DOF 4 boundary code

31-35 DOF 5 boundary code

Initial condition of the projectile-Format(215,F10.0)

Columns Description

1-5 The node at which the projectile hits
6-10 DOF corresponding to the direction of impact

11-20 Initial impact velocity




5. Experimental indentation laws data-Format (4F10.0)

6.

Columns Description

1-10 Contact coefficient k
11-20 Critical indentation a,
21-30 Constant s, of Equation 3-9

31--40 Power index g of the unloading law

Material data
Card 1-format(315,F10.0)

Columns Description

1-5 Order of Gauss quadrature for the numerical
integration of the bending energy
6-10 Order of Gauss quadrature for the numerical
integration of the transverse shear energy
11-15 Order of Gauss quadrature for strain outputs
at Gauss points if >0
at nodal points if <O
16-25 Total thickness of the laminate
Card 2-Format(7F10.0)

Columns Description

1-10 Mass density

11-20 Poisson's ratio v,
21-30 Longitudinal Young's modulus E;
31-40 Transverse Young's modulus E,
41-50 Shear modulus Gy,
11-20 Shear modulus Gy 3

11-20 Shear modulus Ga3
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Card 3,4, -+ Format(I5,F5.0,F10.0)

Columns Description

1-5 Layer number
6-10 Fiber angle

11-20 Thickness of the layer

111. Macro instructions:

The first instruction must be a card with MACR in columns
1 to 4. The macro instructions needed to solve the probliem
specified in Chepter 4 of this report are shown in the
listing of input. Cards must be input in the precise order.
The following is the explanation of each macro:

Columns Columns Columns

1-4 5-10 11-15 Description

LMAS Lumped mass formulation

DT v Set time increment to value V
LOOP N Execute N times the instructions

between this macro and macro NEXT

TIME Advance time by DT value

RODP N Integration of the equations of
motion using the finite difference
method. Contact force, indentation
and element strain will be stored
stored every N steps in loop

DISP N Nodal displacements will be stored

| every N steps in loop

NEXT End of loop instructions
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END End of macro program instructions
IV. Termination of program execution

A card with STOP in columns 1 to 4 must be supplied at

the end of the input data in order to properly terminate tne

execution.

The values of contact force, indentation, element strain,
nodal displacement and the response of the projectile at
each requested output time step are stored in program files
which can be saved (say, copy to a magnetic tape) at the end
of execution. Three program files, i.e.; tape3, tape8 and

tape9 are used for data saving:

Tape3: Nodal displacement - Format(BE12.4)
Nodal displacements, from node 1 to node NUVMNP, are saved
on tape3 at each requested output time step according to the

format.

Tape8: Element strain - Format(216,5E12.4)

Element strains, from element 1 to element NUMEL, and
then from node 1 to node NEN of each element, are saved on
on tape8 at each requested output time step.

Columns Data saved

1-6 Element number
7-12 Node number of element
13-24 Bending strain K

25-36 Bending strain kK,
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37-48 Bending strain k.,
49-60  Transverse shearing strain v,,

49-60 Transverse shearing strain ¥,

Tape9: Contact force, indentation and the response of the
projectile - Format(6E12.4)
The following information 1is saved on tape9® at each
requested output time step:

Columns Data saved

1-12 Contact force
13-24 Indentation
25-36 'Transducer' response (see Chapter 4)
37-48 Displacement of the projectile at the impacted end
37-48 Velocity of the projectile at the impacted end

37-48 Acceleration of the projectile at the impacted end




LISTING OF INPUT DATA

FECM *=LOW UELOCITY IMPACT OF LAMINATED PLATE®x
S g

608 140 20 2
COOR

1 1 0.0 0.0000

7 1 1.5 0.0000
23 1 4.5 0.0000
239 0 6.0 0.0000
30 1 0.0 0.2500
36 1 1.5 0.2500
52 1 4.5 0.2500
58 0 6.0 0.2500
58 1 0.0 0.5000
65 1 1.5 0.5000
81 1 4.5 0.5000
87 0 G.0 0.5000
83 1 0.0 0.6875
94 1 1.5 0.6875
110 1 4.5 0.6875
116 0 6.0 0.6875
117 1 0.0 0.8750
123 1 1.5 0.8750
138 1 4.5 0.8730
145 0 6.0 0.8750
146 1 0.0 1.0625
152 1 1.5 1.0625
168 1 4.5 1.0625
174 0 6.0 1.0625
175 1 0.0 1.2500
181 1 1.5 1.2500
197 1 4.5 1.2500
203 0 6.0 1.2500
204 1 0.0 1.4375
210 1 1.5 1.4375
226 1 4.5 1.4375
232 0 6.0 1.4375
233 1 0.0 1.6250
2335 1 1.5 1.6250
255 1 4.5 1.6250
6l 0 6.0 1.6250
262 1 0.0 1.8125
268 1 1.5 1.8125
284 1 4.5 1.8125
290 0 6.0 1.8125
291 1 0.0 2.0000
237 1 1.5 2.0000
313 1 4.5 2.0000
318 0 6.0 2.0000
320 1 0.0 2.1875
326 1 1.5 2.1875
342 1 4.5 2.1875
348 0 6.0 2.1875
3439 1 0.0 2.3750
355 1 1.5 2.3750
371 1 4.5 2.3750
3r7 0 6.0 2.3750
3r8 1 0.0 2.5625
384 1 1.5 2.5625
400 1 4.5 2.5625
406 0 6.0 2.5625
407 1 0.0 2.7500
413 1 1.5 2.7500
429 1 4.5 2.7500
435 0 6.0 2.7500
436 1 0.0 2.9375
442 1 1.5 2.9375




458 1
464 0
465 1
471 1
487 1
4393 0
484 1
500 1
516 i
522 0
523 1
529 1
545 1
551 0
552 1
558 1
574 1
580 0
581 1
587 1
603 1
603 0
FLEM
1 1
15 58
29 117
43 175
57 233
vl 291
85 348
93 407
113 465
127 523
BOUN
1 1
603 0
ROD
305 3
EXPE
1812000.
MATE
3 3
0.000148
1 0.
2 45.
3 0.
4 —-45,
5 0.
& 0.
7 45.
8 0.
9 -45,
10 0.
11 0.
12 —45.
13 0.
14 45,
15 0.
16 0.
17 -45.
18 0.
13 45,
20 0.

END

61
119
177
235
293
351
409
467
525

0.00

-3

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Ao hA—OMND
nood

ouvltioouiioouivuooUuiyloou

ohr~oOoMbhronbh—OM

118
177
235
283
351
408
467
525
583

115.0

06564

0.3
. 0053
.0053
.0033
. 0053
. 0053
.0053
. 0033
. 0053
.0053
. 0053
. 0033
.0053
. 0053
.0053
.0053
.0053
. 0053
.0053
. 0053
.00353

2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4

59
117
175
233
291
343
407
465
523
581

106
1750

.9375
.9375
.1250
.1250
.1250
. 1250
.3125
.3125
.3125
.3125
.5000
.5000
.5000
.5000
.7500
.7500
.7500
. 7500
.0000
.0000
.0000
.0000

60
118
176
234
292
350
408
466
524

0.094

0000.

32 60
90 118
148 176
206 234
264 292
322 350
380 408
438 466
496 524
554 582

2.0

1150000.

30

88
146
204
262
320
378
436
494
552

31

147
205
263
321
379
437
485
553

800000.

PPV

800000.

800000.
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MACR
LMAS
DT +2E-6
LOOP 10
TIME
RODP 3
DISP 5
NEXT
END
STOP
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LISTING OF PROGRAM

PROGRAM MHIN(INPUT,UUTPUT,TRPE5=INPUT,TQPEG=UUTPUT,TQPEE;TﬂPE3s MARIN 1

1 TAPES8, TAPES) MAIN 2
Covxesese MAIN PROGRAM MAIN 3
LOGICAL PCOMP MAIN 4
COMMON /PRSIZE/ MAX . MAIN S
COIMMGN ~CTDATA~ 05 HEADC(20) s NUMNP, NUMEL s LAYER, NEQs IPR MAIN 6
COMMON ~LABELS/ PDIS(B),A(B),BC(2)sDI(E),CD(3)>FD(3) MARIN 7
COMMON /LODATA/ NDF, NDMs NENs NST» NKM MAIN 8
COMMON /PARATS/ NPAR(14),NEND MAIN 9
DIMENSION TITL(20)>WD(3) MAIN 10
COMMON G(33000) MAIN 11
DIMENSION M(33000) MAIN 12
EQUIVALENCE (G(1)5M(1)) MAIN 13
MAX=33000 MAIN 14

WD (1)=4HFECHM MAIN 15

WD (2)=4HMACR MAIN 16
WD(3)=4HSTOP : MAIN 17
999 READ(S,1000) TITL MAIN 18
IF (PCOMP(TITL(1),WD(1))) GO TO 100 MAIN 19
IF(PCOMP(TITL(1)sWD(2))) GO TO 200 MAIN 20
IF(PCOMP(TITL(1),WD(33)) STOP : MAIN 21

GO TO 8389 MAIN 22

100 DO 101 I=1,20 MAIN 23
101 HEAB(I)=TITL(I) MAIN 24
READ(S, 1001) NUMNP» NUMEL s LAYERs NDMs NDF » NEN MAIN 25
WRITE (852000) HEADs NUMNPs NUMEL» LAYER» NDM» NDF» NEN MAIN 26
PDIS(2)=A(NDM) MAIN 27
NST=NEN=NDF MAIN 28

Do 110 I1=1,14 MAIN 23

110 NPAR(I)=1 MAIN 30
NPAR(1)=1 MAIN 31
NPAR(2)=NPAR(1)+3=NST*IPR MAIN 32
NPAR(3)=NPAR (2> +NDM*NEN®*IPR MAIN 33
NPAR (4)=NPAR (3)+NST MAIN 34
NPAR(5)=NPAR(4)+NST#IPR MAIN 35
NPAR (8)=NPAR (5)+NEN:NUMEL MAIN 36
NPAR (7)=NPAR (6)+NDF *NUMNP MAIN 37
NPAR (8)=NPAR (7 ) +NDM=NUMNP*IPR MAIN 38
NPAR (9)=NPAR (8)+NDF *NUMNP*IPR MAIN 38
NPAR ( 10)=NPAR(9) +NDF *NUMNP MAIN 40
CALL SETMEM(NPAR(S)) MAIN 41
CALL PZERO(G(1)5NPAR(S)) MAIN 42
CALL PMESH(M(NPAR(3)), GINPAR(2))» MINPAR(S) )y MINPAR(ED ) MAIN 43

1 G(NPAR(Z))sGINPAR(B) ) s MINPAR(3) ) » NDF s NOM» NEN» NKM) MAIN 44
NPAR(10)=NPAR()+NEQ MAIN 45
NPARC11)=NPAR(10)+NDF=NUMNP:*IPR MAIN 46
NEND=NPAR(11)+NEQ@=IPR MAIN 47
NE=NEND MAIN 48
CALL SETMEM(NE) MAIN 49
CALL PZERO(G(NPAR(10)),NE-NPAR(10)) MAIN 50

GO TO 999 MAIN 51

200 CALL PMACR(G(NPAR(1))Y»G(NPAR(2) ), M(NPAR(3) ), GINPAR(4)), MAIN 52
1 M(NPQR(S))»M(NPHR(S));G(NPQR(?));G(NPQR(S));M(NPQR(S)); MAIN 53

2 G(NPARC10)),G(NPAR(11))sG(NEY» NDF s NDMs NEN, NST) MAIN 54
CALL PZERO(G, I1RX) MAIN 55

GO TO 989 MAIN 56
1000 FORMAT(20R4) MAIN 57
1001 FORMATC(16IS) MAIN 58
2000 FORMAT(1HL,20R4/~ MAIN 59
1 SX%#C ONTROL INFORMATIONSA#/ MAIN G0

2  10%,35HNUMBER OF NODAL POINTS =, 16/ MAIN 61

3 10Xs 35HNUMBER OF ELEMENTS =, 16/ MAIN 62

4 10%» 35HNUMBER OF MATERIAL LAYERS =, 16/ MAIN 63

5 10X, 35HDIMENSION OF COORDINATE SPACE =, 16/ MAIN 64

6 10X, 35HDEGREES OF FREEDOM FOR EACH NODE =,16/ MARIN B5

7 10X, 35HNODES PER ELEMENT (MAXIMUM) =, IC2 MAIN 66
END MAIN 67
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cC
BLLOCK DATA BLOC 1
Cxxesesz BLOCK DATA - BLOC 2
COMMON ~CTDATA” 0sHEAD(20) s NUMNPs NUMELs LAYER, NEQs IFR BLOC 3
COMMON ~LABELS/ PDIS(6)sA(B)sBC(2)sDI(B),CD(3),FD(3) BLOC 4
DATA 0/1H1-s IPR/Y/ BLOC 5
DATA PDIS/4H(I110s2H, s4HF13.54H4s »4HEE1354H.4) 7/ BLOC &
DATA A/8Hs 1s2Hs 25 2Hs 35 2Hs 49 2Hs 55 2Hs 67 BLOC 7
DATA BC/4H B.Cs2H. 7 BLOC 8
DATA DI/4H DIS, PHPL,4H UEL,2H0Cs4H ACCs2HEL” BLOC 9
DATA CD/4H COO0s 4HRDIN, 4HATESA BLOC 10
DATA FO/4H FOR» 4HCE/D, 4HISPL/ : BLOC 11
END BLOC i
C
SUBROUTINE PMQCR(UL9XL9LD9P;IX;ID,X,F,JDIQG;DR;B;CT;NDF.HDM, PMAC 1
~ NEN.NST) PHAC 2
Csesesrst MACRO INSTRUCTION ROUTINE PMAC 3
LOGICAL PCOMP : PHaAC 4
COMMON G(1) MR B
DIMENSION MC1) PMRC G
ERUIVALENCE (G(1).M(1)) PMAC 7
COMMON ~CTDATA- 0,HEAD(20) s NUMNP, NUMEL s LAYERs NEQs IPR PrHaC &
COMMON ~PROLOD/ PROP PHAC 9
COMMON ~TMDATA/ TIMEs DT, DDT, FORCEs ALPHA PHAC 10
COMMON ZISWIDX/ ISW PMAC 11
COMMON /PARATS/ NPAR(14),NEND PMAC 12
COMMON /RODATA” UR, IQsNDS PMAC 13
DIMENSION UL(l)pXL(l)yLD(l)vP(l)’IX(l)rID(l)vX(i)yF(l), PMAC 14
~ JDIAG(1)sDR(1),B(1) PMAC 14
DIMENSION WD(9)sCT(4516):LUE(S) PHMAC 16
DATA WD/4HLOOPs 4HNEXTs 4HDT s 4HPROP, 4HLMAS» 4HRODP, PMAC 17
1 4HSTRE s 4HDISPs 4HCHEC/ PMAC 18
DATA NWD-/S/s ENDM/74HEND ~ PMAC 19
Cosee INITIALIZATION PMAC 20
BT = 0,0 PMac 21
PROP = 1.0 PMAC 22
TIME = 0.0 PMAC 23
NNEQ = NDF=NUMNP FMAC 24
NPLD = 0 PMAC 25
FORCE= 0. PMAC 26
ALPHA= 0. PMAC &7
WRITE(B,2001) 0sHEAD PMARC 28
LL = 1 PMAC 29
LMAX = 16 PMAC 30
CALL SETMEM(NEND+LMAX*4#IPR) PMAC 31
CT(1,1) = WD(1) PMAC 32
CT(3:1) = 1.0 PHMAC 33
100 LL = LL + 1 PMAC
IFC(LL.LT.LMAX)Y GO TO 110 PMAC ¢
LMAX = LMAX + 16 PMAC 35
CALL SETHMEM(NEND+L.MAX:4IPR) PHMAC
110 READ(551000) (CT(JsLL)>J=1:4) PMAC
WRITE(B,2000) (CT(JsLL)s =143 PMAC
IFC(.NOT.PCOMP(CT(1,LL)sENDM)) GO TO 100 PMAC
CTCisLL) = WD(2) . PMAC
NEND = NEND +LMAK#4:=IPR PMAC
LX = LL - 1 PMAC
DO 230 L=1,LX PMAC
IF (. NOT.PCOMP(CT(1,L3,WD(1))) GO TO 230 PMAC
J=1 PMaC
K=L+1 PMAC
DO 210 I=KsLL PMAC 4&
IF(PCOMPCCT(L, ) WDC(I)) U =Jd + 1 PMAC 4%
IF(J .GT. 9) GO TO 401 PHAT
IF(PCOMPCCT(L I WBA)) d =Jd - 1 FiaC
210 IF(J.EQ.0) GO TO 220 PHAL
GO TO 400 PHAC 53
220 CT(4,1) = L FrRe LY
CT4,L) =1 PMAC 55
55

230 CONTINUE PHMAC




J=0
DO 240 L=1,LL
IF(PCOMP(CT(1,L)sWDC(1))) J
240 IF (PCOMP(CT(1,L),WD(2))) J
IF(J.NE.0) GO TO 400
LU = 0
L=1
299 DO 300 J=1,NWD
300 IF(PCOMP(CT(1,L)»WD(J))) GO TO 310
GO TO 330
310 I = L - 1
60 TO (1,2:3+4,5:6,7,859)5J
C....  SET LOOP START INDICATORS
1LU=1LU+1
LX = CT(4,L)
LUE(LU) = LX
CT(3,LX) = 1.
GO TO 330
C....  LOOP TERMINATOR CONTROL
2 N = CT(4,L)
CT(3,L) = CT(3,L) + 1.0
IF(CT(3,L).GT.CT(3:N)) LU = LU - 1
IF(CT(3,L).LE.CT(3:N)) L = N
GO TO 330
C....  SET TIME INCREMENT
3 DT = CT(35L)
DDT= DT=DT
GO TO 330
C....  INPUT PROPORTIONAL LOAD TABLE
4 NPLD = CT(35L)
PROP = PROPLD(0.,NPLD)
GO TO 330
C....  FORM LUMPED MASS MATRIX
5 ISW=3
CALL KMLIB
GO TO 330
Cewe.  IMPACT
6 NDS=CT(3,L)
IF(NDS.EQ.0) NDS=1
CALL RODIPCT
CO TO 330
C....  PRINT STRESS/STRAIN UALUE
7 1SW=4
LX = LUE(LU)
IF (AMOD(CT (35 LK) » AMAX1(CT(35L)51.)3) 330,71,330
71 CALL FSTREACUL,XLsLDsPs IXs IDs Xs Fs JOIAGs DR» B NDF» NDM» NEN» NST» NNEQ)
GO TO 330
C.e..  PRINT DISPLACEMENTS
8 LX = LUECLY)
TF (AMOD(CT(3s LX) » AMAXL(CT(35L)5 1.))) 330,81, 330
81 CALL PRTDISCUL, IDsXsBsF 5> DRy NDMs NDF)
GO TO 330
Coeo.  CHECK
9 WRITE(E,5001) NENDs JDIAG(NER)
RETURN
330 L=L+1
IF (L.GT.LL) RETURN
GO TO 293
C....  FRINT ERRDR FORMATS
400 WRITE(B>4000)
RETURN
401 WRITE(E,4001)
RETURN
Coeo.  INPUT/OUTPUT FORMATS
1000 FORMAT(A45 1%, Ads 1%, 2F5.0)
2000 FORMAT (10X, Ads 15 Ady 1X5 2615.5)
2001 FORMATCAL, 20A4-/s 5%, 18HMACRD INSTRUCTIONS//5X» 1SHMACRO STATEMENT
A +5%, 10HUARIABLE 1,5%» 10HUARIABLE 2)
4000 FORMAT (5%, 46H==PMACR ERROR 013 UNBALANCED LOCP,HiiXT MACROS )
4001 FORMAT(5X,45H:+*PHACR ERROE 023 LOOPS NESTED DEEPER THAN 8)

nn
o

1+
-
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PMAC 57
PMAC 58
PMAC 58
PMAC 60
PMAC 61
PMAC 62
PMAC 63
PMAC 64
PMAC 65
PMAC 66
PMARC 67
PMAC 68
PMAC 69
PMAC 70
PMAC 71
PMAC 72
PMARC 73
PMAC 74
PMAC 75
PMAC 76
PMAC 77
PMAC 78
PMAC 79
PMAC 80
PMAC 81
PMAC 82
PMAC 83
PMAC 84
PMAC 85
PMAC 86
PMAC 87
PMAC 88
PMAC 89
PMAC 80
PMAC 91
PMAC 92
PMAC 83
PMAC 94
PMAC 95
PMAC 96
PMAC 97
PMAC 98
PMAC 99
PMAC100
PMACL101
PMACL102
PMAC103
PMAC104
PMAC10S5
PMACL0B
PMAC107
PMAC108
PMACL09
PMAC110
PMAC111
PMACL12
PMAC113
PMACL114
PMACI1S
PMACL1E
PMACLLY
PMAC118
PMAC11S
PMAC120
PMACL21
PMAC122
PMAC123
PMAC124
PMAC125
PMARC126




5001 FORMAT(1H1,////5%,32HCHECK MESH DATA AND MEMORY SPACE//
~  10Xs12H NEND =5 110//10Xs 12HJDIAGINEQ) =5110)

END

SUBROUTINE PZERO(UsNN)
Corsesex ZERO REAL ARRAY
DIMENSION U(NN)
DO 100 N=1sNN
100 U(N) = 0.0
RETURN
END

SUBROUTINE SETMEM(J)
MONITOR AUAIABLE MEMORY IN BLANK COMMON

COMMON /PRSIZE/ MAX

K=J

IF(K.LE.MAX) RETURN

WRITE(E, 10003 KsMAX

STOP

1000 FORMAT (5K, 49H==SETMEM ERROR 0lss INSUFFICIENT STORAGE IN BLANK,
~  8H COMMON //17%, 11IHREQUIRED =, I18/17Xs 11HAUAILABLE =,I8)

END

[

n
b 3

]
<3

LOGICAL FUNCTION PCOMPCA.B)
Coesesest LOGICAL COMPARISCN
IF(A-B) 10,20510
10 PCOMP = .FALSE.
RETURN
20 PCOMP = .TRUE.
RETURN
END

SUBROUTINE ACTCOL(As Bs JDIAGs NEAQs AFACs BACK, 155)
Caesesest ACTIVE COLUMN PROFILE SYMMETRIC EBQUATION SOLUER
LOGICAL AFAC, BACK, FLAG
DIMENSION AC1),B(1)sJDIAG(L)
Cicoe FACTOR A TO UT=D=U, REDUCE B
FLAG=.FALSE.

JR =0

DO 600 J=1,NEQ
JD = JDIAG(J)
JH = JD - JR
IS=Jd-JH+2

IF(JH-2) 80053005100
100 IF(.NOT.AFAC) GO TO S00
IE=J-1
K=JR + 2
ID = JDIAG(IS-1)
Covre REDUCE ALL EQUATIONS EXCEPT DIAGONAL
DO 200 I=IS,IE
IR = ID
ID = JDIAGCI)
IH = MINOCID~IR-1,I-IS+1)
IF(IH.GT.0) ACK)Y=A(K)~DOT(ACK~IH)s ACID-IH), IH):
200 K =K + 1
Ciove REDUCE DIGONAL TERM
300 IF(.NOT.AFAC) GO TO 500

IR=JR + 1
IE=J0 -1
K=dJ-JD

DO 400 I=IRsIE

ID = JDIAG(K+ID

IFC(ACID)) 301,400,301
301 D = A(I)

ACI) = ACI)/7ACID)

ACJD) = AGID) - D=ACD)
400 CONTINUE

IF(A(JD))>4505 450,500
450 IF(ISS.NE.0) GO TO 500

IF(FLAG) GO TO 465
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pPMAaCiz?
PMACLZE
PMAC1ES
PZER 1
PZER 2
PZER 3
PZER 4
PZER T
PZER B
PZER 7
SETM 1
SETH 2
SETM 3
SETH 4
SETH 5
SETHN 6
SETH 7
SETM 8
SETI 9
SETH 18
PCOIM 1
PCOM 2
FCOM 3
pCor 4
PCOM 5
PCOM G
PCON 7
PCCIt &
ACTC 1
ACTC &
AcTC 2
ACTC 4
ACTC &
ACTC B
ACTC 7
ACTE 8
ACTC 9
ACTC 10
ACTC i1
ACTC 12
ACTC 13
ACTC 14
ACTC 15
ACTC 16
ACTC L7
ACTC 18
ACTC 18
ACTC 20
ACTC 21
ACTC 22
ACTC 23
ACTC 24
ACTC 25
ACTC 6
AcCTC 2

ACTC 28
ACTC 29
ACTC 30
ACTC 31
ACTC 32
ACTC 33
ACTC 34
ACTC 35
ACTC 35
ACTC 3

ACTC 38




480 FORMAT(//S0H#*=#ACTCOL ERROR 01x STIFFNESS MATRIX NOT POSITIVE »

465
466
C.l'l

650
700
C.."

800

900
1000

50

100
200
100

Ceseanse

160

1

Ceoon
500
600

WRITE(6,460)

8HDEFINITE)
FLAG=.TRUE.
HRITE(G,466) J>A(JID)

FORMAT(32H NONPOSITIVE PIUOT FOR ERBUATION »I4,5X, 7HPOVIT =,

E20.10)
REDUCE RHS

IF(BACK) B(J) = B(J) - DOTC(AC(JR+1)sB(IS~1)sJH-1)

JR = JD
IF(FLAG) STOP
IF(.NOT.BACK) RETURN
DIVIDED BY DIAGONAL PIVOTS
DO 700 I=1,NEQ
ID = JDIAG(I)
IF(ACID)) 630,700,650
B(I) = B(I)/A(ID)
CONTINUE
BACK SUBSTITUTE
J = NEQ
JD = JDIAG(D)
D = B(J)
J=J -1
IF(J.LE.0) RETURN
JR = JDIAG(J)
IF(JD-JR.LE.1) GO TO 1000
IS=J-JdD+ JR + 2
K=JR-1IS + 1
D0 S00 I=ISsJ
B(I) = B(I) - ACI+K)*D
JD = JR
GO TO 800
END

SUBROUTINE ADDSTF (A, SsPs JOIAG, LDs NSTs NEL,FLG)
ASSEMBLE GLOBAL ARRAYS

LOGICAL FLG

DIMENSION AC1),S(NST,1)sP(1),JDIAG(1),LD(1)

DO 200 J=1,NEL

K = LD(D

IF(K.EQ.0) GO TO 200

IF(FLG) GO TO S0

AKI=AKI+P(J)

GO TO 2060

L = JDIAGIK) - K

DO 100 I=1,NEL

M= LD(I)

IF(M.GT.K .OR. M.EQ.0) GO TO 100

M=L+MN

AN =AMI+S(I,J)

CONTINUE

CONTINUE

RETURN

END

FUNCTION DOT(A,BsN)
UECTOR DOT PRODUCT

DINENSION AC1),B(1)

DOT = 0.0

N0 100 I=1,N

DOT = DOT + ACI)®B(I)

RETURN

END

SUBRDUTINE PLOADCID>FsBsNNaP)
FORM LOAD UECTOR IN COMPACT FORM
DIMENSION IDC1)-F(13,BC1)
DO 160 N=1,NN
J=IBDN)
IF(J.GT.03 B(DH=F(N)=P
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RETURN
END

FUNCTION PROPLD(TsJ)

Corseren PROFORTIONAL LOAD TABLE (ONE LOAD CARD ONLY)

Cevow

 Ceves
: 200

1000
2000

COMMON /CTDATA/ O0s HEAD(20) s NUMNP» NUMEL » LAYERs NEG» IPR
DIMENSION A(S)
IF (J .LE. 0) GO TO 200
INFUT TABLE OF PROPCGRTIONAL LOADS
I=1
READ(5,1000) Ko Ls TMINs TMAXs (ACKKK) s KKK=153)
WRITE(B52000) 0sHEAD, I5KsLs TMINs TMAKs (RCKKKY » KKK=155)
RETURN
COMPUTE UALUE AT TIME T
PROPLD = 0.0
IF(T.LT.TMIN .OR. T.GT.TMAX) RETURN
L = MAXO(L, 1)
PROPLD = ACL+ARI#THA(3)#(SINCA(4)=T+A(S) I I =%
RETURN
FORMAT (215, 7F10.03
FORMAT (AL, 20A4/ /5%, 23HPROPORTIONAL LOAD TABLE//11H NUMBER

1 43H TYPE EXP. MINIMUM TIME — MAXIMUM TIMEs 13Xs2HAL, 13X,

2 2HARs 13X, 2HAS, 1385 2HAYs 13X, 2HAS/ (3185 7615, 5))
END .

SUBROUTINE PRTDIS(UL, IDsXsBsFs To NDMs NDF)
QUTPUT NOBAL UALUES

LOGICAL PCOHP

COMMON ~PROLOD~ PROP

t C0Mi‘105\{ /CTDATAZ 0sHEAD(20) s NUMNP, NUMEL s LAYER, NEQ, IPR
“"COMMON /LABELS, PDIS(6)sA(6).BC(2)5DI(6),CD(3),FD(3)

COMMON ~/THDATA TIME. DT, DDT, FORCE, ALPHA
DIMENSION X(NDMs 135 B(1)5 UL(E)s ID(NDF» 1), F(NDF, 1), T(1)
DATA BL-/4HBLAN/

- DO 102 N=1,NUMNP

100

101
102

2001

Crsesrst

110

Coeseaese

IF(PCOMP(X(1,N)sBL)) GO TO 101
DO 1006 I=1,NDF

ULC(I) = F(IsN)*PROP

K = IABS(IDCIsN))

IF(K.GT.0) ULC(I)=B(K)
TMN)=UL(3)

CONTINUE

CONTINUE

WRITE(3,2001) (T(I)sI=1,NUMNP)
RETURN

FORMAT (BE12.4)

END

SUBROUTINE FSTREACUL»XLsLDsPs IXs IDs X Fs JDIAGs ORs By NDF» NDMs NEN,
~ NSTs NNEQD
ELEMENT RCUTINE

COMMON ~CTDATAZ Os HEAD(20) s NUMNP s NUMEL, LAYER, NEQ> IPR

COMMON ZELDATAZ Ns NELsMCT

COMMON ~/ISWIDK, ISH

COMMON ~PROLOD/ PROP

DIMENSION ULCNDF, 1) XL(NDM> 1) LD(NDFs 1)5P (1), IX(NENs 1)

1 TD(NDF» 105 X(NDMs 1)»F (NDF» 1)5 JDIRG(1)5 DR(1)» B(1)5S(1)
IF(ISW.EQ.5) CALL PLOADCIDsF»>DRsNNEQs PROP)

MCT=0

DO 110 N=1,NUMEL

CALL PFORMCULs XLy LDy IXs IDs ¥y Fs Bs NDFs NDMs NENs ISW)

CALL ELMTOIL(ULsXLs IX(1sNYsPsNDFs NDMs NSTs ISH)

IF(ISW.NE.4) CALL ADDSTF(DR,S,Ps JDIAG,LDs 15 NEL#NDFy FALSE. )
CONTINUE

RETURN

END

SUBROUTINE PFORM(ULs XLsLDs IXs IDy Xs s Us NDF s NDMs NENs IGW)
FORM LOCAL ARRAYS
COMMON /ELDATAZ NoNELsMCT
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103

104
105

106

107
108

b3

Caesess

20
Covoo

410
420

N

1

" EPT(L)

COMMON ~PROLODB~ PROP

DIMENSION UL (NDF,1)5 XL (NDM» 1) LDC(NDFs 15 IXCNENs 135 ID(NDF5 1),

X(NDMs 135 F(NDF» 1) UCL)
DO 108 I=1,NEN
II = IXC(IsN)
IF(II .NE. 0) GO TO 105
DO 103 J=1,NOM

XL(d I = 0,

DO 104 J=1,NDF
UL(dT) = 0.
LD(J>T) = 0

GO TO 108

IID = II=NDF - NDF
NEL = 1

DO 106 J=1,NDM

XL(II) = X(J5IID

DO 107 J=1,NDF

K = IABS(ID(JsII))
UL(J»I) = F(J> I11)=PROP
IF(K.GT.0) UL(Js I)=UCK)
IF(ISH.EQ.B) K=IID+J
LDC(Js 1) = K

CONTINUE

RETURN

END

SUBROUTINE ELMTO1(ULsXLs IXsPsNDFsNDMsNSTs ISH) °
LINEAR ELASTIC IN-PLANE ~ BENDING ELEMENT ROUTINE

LOGICAL TAN v

COMMON /ELDATA/ NsNEL,MCT

COMMON /MTDATA/ RHO,UU12,EL,E25 G125 G135 G235 THKs HIDTH

COMMON ~COMPST/ ABD(B,B),DS(2,2),3BR(3»3525),@BS(252s25)»

TH(25), ZK(25)
COMMON ~DMATIX~/ D(10),DB(6s6),LINT
COMMON ~TMDATA/ TIME, DT, DDTs FORCE, ALPHA
COMMON /GAUSSP/ SG(16),TG(16),HG(16)
COMMON ~ZEXTRAS/ TAN
DIMENSION ULCNDF, 1), XLCNDMs 1), IX(1),P(1)5SHP(3512),
SIGT(3),SIGB(3)sSIGS(R),EPT(3)sEPB(3),EPS(2)

DO 20 L=1,NST
P(L) = 0.0
COMPUTE NEUTRAL STRAINS AND STRESS RESULTANTS
L = DCL
IFCISW.EQ.4) |.=D(3)
CALL PGAUSS(LsLINT)
DO 600 L=1,LINT
COMPUTE ELEMENT SHAPE FUNCTIONS
CALL SHAPE(SG(LYs TG(L)» XL s SHPs XSJs NDMs NELs IXs o FALSE. )

COMPUTE STRAINS AND COORDINRTES
DO 4i0 I=1,3
EPT(I) = 0.0
EPB(I) = 0.0
PO 420 I=1,2
EPS(I) = 0.0
Xx = 0,0
YY = 0.0
DO 430 J=1,NEL
= KX + SHP(3y D =XRL(1,0)

XX
YY = YY + SHP(3, D =XL(25J)
IN-PLANE STRAINS

>
>

= EPT(1) + SHP(1, =UL(Ll,J)
EPT(2) = EPT(2) + SHP(2, D=UL(2,J)
EPT(3) = EPT(3) + SHP(1, =UL(25J) + SHP(2, JI=UL(1s J)
BENDING CURVATURES
EPB(1) = EPB(1) - SHP(1,J)*UL(4,J)
EPB(2) = EPB(2) - SHP(2, J)=UL(5,J)
EPB(3) = EPB(3) - SHP(1,)*UL(5,J) = SHP(2, J)=UL(4,J)

SHEARING STRAINS
EPS(1) = EPS(1) + SHP(1,J)#UL(35J) — SHP(3, J)*UL(45J)
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430 EPS(2) = EPS(2) + SHP(2, J)*UL(3sJ} — SHP(3s J)=UL(5,J)

ol

IFCISW.EQ.5.AND. TAN)
WRITE(S,8001) NsLs (EPB(II)sII=1,3), (EPS(II)sI=1,2)

9001 FORMAT(21655E12.4)

cC ..

440

450

~

~

COMPUTE STRESS RESULTANTS
DO 440 I=1,3
SIGT(I) = 0.
SIGB(I) 0.
D0 440 J=1,3
SIGT(I) SIGT(I) + ABD(I, JI=EPT(J) + ABD(I, J+3)*EPB(J)
SIGB(I) SIGB(I) + ABD(I+3, HN=EPT(J) + ABD(I+3> J+3)+EPB(J)
DO 450 I=1,2
SIGS(I) 0.
DO 450 J=1,2
SIGS(I) = SIGS(I) + DS(I, I=EPS(J)
IFC(ISW.GT.4) CO TO G20
DUTPUT STRESS RESULTANTS AND STRAINS
MCT = MCT - 2
IF(MCT.GT.0) GO TQ 470
HRITE(652001) TIME
MCT = 30
WRITE(6,2002) NsXX»YYs EPT»EPBs EPSs SIGT» SIGBs SICS
GO TO 600
COMPUTE INTERAL FORCES

o

DU = XSJ=HG(L)

Ji =1

D0 610 J=1.NEL

P(JL ) = P(J1 ) = (SHP(1s)*SIGT(1)+SHP(25 J)*SIGT(3))*DU

P(JI+1) = P(JI+1) — (SHP(2, )*SIGT(2)+SHP (1, J)*SIGT(3))*DyY

P(JI+2) = P(JL1+2) - (SHP(1,J)=SIGS(1)+SHP (25 J)#SICS(2)) %DV

P(J1+3) = P(J1+3) + (SHP(1, J)=SIGB(1)+SHP(25 JI*SIGB(3)+SHP(3sJ)
#SIGS(1))=DU

P(J1+4) = P(J1+4) + (SHP(2, J)=#SIGB(2)+SHP (1, J)#SIGB(3)+SHP (35 J)

#*5IGS(R2))I%DU

610 Ji = Ji + NDF
600 CONTINUE

RETURN

C
2001 FORMAT(1HLl,/

AW >

5Xs HTIME =, E12.3//5%, 33HELEMENT STRAINS/STRESS RESULTANTS//
8H ELEMENT, 3%» 7H1~COORDs 3%, 7H2~COORDs 4X» SHXX-STRAIN, 4%,
SHYY-STRAIN, 4Xs GHXY-STRAINs 3Xs 10HKKX-STRAINs 3K,
10HKYY=-STRAIN, 3%s 10HKXY-STRAINs 4Xs SHSX-STRAIN, 4Xs
9HSY-STRAIN/28Xs 8(6Xs PH-STRESS) /)

2002 FORMAT(I8,2F10.458E13.4/28X,8E13.4)

C

Cadexst

Ceves

C..I'

END

SUBROUTINE PCAUSS(LLsLINT)
GAUSSIAN POINTS AND WEIGHTS FOR TWO DIMENSIONS
COMMON ~GAUSSP/ SG(16), TG(16)5HG(16)
DIMENSION LR(9),LZ(3),LH(9),HR(2),GR(2),GC(2)
DATA LR/=1,151,=150s150s=1,0/5L2/-15~151s1s=1,051505,07
DATA LH/4225, 4240, 54/
DATA GR/0.861136311594053, 0.3339810435848567
DATA GC-1.0,0,33333333337
DATA WR/0.347854845137454, 0.6521451548625467
LINT = LL=LL
L=IABS(LL)
GO TO (15253s4)sL
1X1 INTEGRATION
SG(L) 0.
TG C.
WG(1) 4.
RETURN
2X2 INTEGRATION

nonu

2 G = 1./50RT(3.)

TF(LL.LT.0) G=1.
BO 21 I=1,4

SG(I) = G=LR(I)
TG(I) = G=LZ(I)

ELMT 75
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31
C.Il.

a1

O
Ceveo

100
Cecvo
110
Coeoos
120

Covon

Coooo

140
2000

HG(I) = 1.
RETURN

3X3 INTEGRATION
G = SBRT(0.6)
IF(LL.LT.0) G=1.
H=1./81.
DO 31 I=1,9
SG(I) = G*LR(I)
TG(T) = G#L.Z(1)
HG(I) = HeLW(I)
RETURN

4X4 INTEGRATION
Do 41 I=1i,4
I1 = 1+MOD(I+152)
2 =1
IF(I.GT.2) I2 = 2
DO 41 J=1,4
JJ = (I-1)%4+d
SG(JJ) = LR(JI=*GR(IL1)
IF(LL.LT.0) SG(JJ) = LR(JI*GC(IL)
TG(JJ) = LZ(J)=GR(I2)
IF(LL.LT.0) TG(JJ) = LZ2(J)*GC(I2)
WG(JJ) = HR(ILI=UR(IZ)
RETURN
END

SUBROUTINE SHAPE(SS, TTs Ks SHPs XSJs NDMs NELs IX,FLG)
SHAPE FUNCTION ROUTINE FOR TWO DIMENSIONAL ELEMENTS
LOGICAL FLG

DIMENSION SHP(3s4),X(NDMs 1)55(4),T(4),X5(2,2)sSX(2,2), IX(3)

DATA 5/-0.5,0.550.5,-0.5/,T/-0.55-0.5,0.5,0.5/

FORM 4-NODE QUADRILATERIAL SHAPE FUNCTIONS
DO 100 I=1,4
SHP(35 1) (0,5+5(1)%8S)*(0.5+T(I)*TT)

SHP(1,1) S(I)%(0.S+T(I)*TT)
SHP(2, 1) T(I)*(0.5+S(I)%58)
IF(NEL.GE.4) GO TO 120
FORM TRIANGLE BY ADDING THIRD AND FOURTH TOGETHER
DO 110 I=1,3
SHP(I,3) = SHP(Is3)+SHP(Is4)
ADD QUADRATIC TERMS IF NECESSARY
IF(NEL.GT.4 .AND. NEL.LT.10) CALL SHAP2(SSsTTsSHPs IXsNEL)
ADD CUBIC TERMS IF NECESSARY
IF(NEL.GT.9) CALL SHAP3(SSs TTsSHPs IXs NEL)
CONSTRUCT JACOBIAN AND ITS INVERSE
DO 130 I=1,NDM
DO 130 J=1,2
XS5(I,J) = 0.0
DO 130 K=1,NEL
XS(IsJ) = XS(Ly D+ R(J>KI%SHP(I,K)
XS = K51, 1)2KXS(2,2)~KS(1,2)%X5(2s 1)
IF(XSJ .GT. 0.00000001) GO TO 135
WRITE(E,2000) IX

SToR

IF(FLG) RETURN

SR(1,1) = X8(2:,2)7X5d

SK(2,2) = X5(1,1)7X5J

SX(1,2) = —XS(1,2)7X5J
SXR(25,1) = —X5(251)/K8.J

FORM GLOEA!L. DERIVATIVES
DO 140 I=1,NEL

TP = SHP(1, I)%GX (1, 13+SHP (2, I1)=8X (25 1)
SHP(2,I) = SHP(1,I)#8X(1,2)+SHP (25 1)%5X(252)
SHP(L, 1) = TP

RETURN

FORMAT (5%, 67H=:SHAPE ERROR 0l#= ZERD OR NEGATIVE JACOBIAN DET. FOR

~ELEMENT NODES: /20X, 1214)
END

SUBROUTINE SHAPZ2(S, T» SHPs IXs NEL)
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ADD QUADRATIC FUNCTIONS AS NECESSARY
DIMENSION IX(9),SHP(3,12)
s2 = (1.-5%5)/2.
T2 = (1.-T=T)/2,
DO 100 I=S5,NEL
DO 100 J=1,3
SHP(J,I) = 0.0
MIDSIDE NODES (SERENDIPITY)
IF(IX(5).EQ.0) GO TO 101
SHP(1,5) =5%(1.-T)
SHP(255) -52
SHP(355) S2%(1.-T)
IF(NEL.LT.6) GO TO 107
IF(IX(6).EQ.0) GO TO 102
SHP(1,6) T2
SHP(256) -T#(1.+8)
SHP(356) T2%(1.+5)
IF(NEL.LT.7) GO TO 107
IF(IX(7).EQ.0) GO TO 103
SHP(157) =5 (1.+T)
SHP(257) 52
SHP(3,7) S2:(1.+T)
IF(NEL.LT.8) GO TO 107
IF(IX(8).EQ.0) GO TO 104
SHP(1,8) = -T2
SHP(2,8) = -T%(1.-5)
SHP(3,8) = T2%(1.-5)
INTERIOR NODE (LAGRANGIAN)
IF(NEL.LT.9) GO TO 107
IF(IX(9).EQG.0) GO TO 107
SHP(1,9) = —4.%5#T2
SHP(259) ~-4.%T%52
SHP(359) 4, %52%T2
CORRECT EDGE NODES FOR INTERIOR NODE(LAGRANGIAN)
DO 106 J=1,3
DO 105 I=1,4
SHP(JsI) = SHP(J,I) - 0.25%SHP(J,9)
DO 106 I=5,8
IF(IX(I).NE.O) SHP(J,I) = SHP(J,I) -0.5%SHP(J,9)
CORRECT CORNER NODES FOR PRESENCE OF MIDSIDE NODES

nuwn nun

=8
DO 108 I=1,4
L=1+4
DO 108 J=1,3
SHP(Js 1) = SHP(JsI) = 0.5%(SHP(JsKI+SHP(Js1))
K=1L
RETURN
END

SUBROUTINE SHAP3(Ss T» SHPs IXs NEL)

ADD CUBIC FUNCTION AS NECESSARY (SERENDIPITY)
DIMENSION IX(12)sSHP(3,12)
DO 100 I=5,NEL
Do 100 J=1,3
SHP(J» I)=0.0
IF(IX(5).EQ.0) GO TO 101
Si=-1./3.
Ti=-1.
CALL CSHAPE(S»T,S1»T1lsSHP>1,5)
IF(IX(B).EQ.0) GO TO 102
Si=1.
T1=-1./3.
CALL CSHAPE(S,;T»S1, Ti,SHP>256)
IF(IX(7).EQ.0) GO TOD 103
S1=1./3.
Ti=1.
CALL CSHAPE(S, TsS1sT15SHP»1s7)
IF(IX(8).EQ.0) GO TO 104
Sl=-1.
Ti=1./3.
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CALL CSHRPE(S»Ts»S1,T1sSHP:2,8) SHAP 22
104 IF(IX(9).EQ.0) GO TO 105 SHARP 23
Si=-1. SHAP 24
Ti=-1.73. SHAP 25
CALL CSHAPE(SsT>S15T1,SHPs2,9) SHAP 26
105 IF(NEL.LT.10) GO TO 200 SHAP 27
IF(IX(10).EQ.0) GO TO 106 SHAP 28
S1=1./3. SHAP 29
Tl=-1, SHAP 30
CALL CSHAPE(SsT»S1sT1ySHPs 1510) SHAP 31
106 IF(NEL.LT.11)> CO TO 200 SHAP 32
IF(IX(11).EQ.0) GO TO 107 SHAP 33
S1=1. SHAP 34
Ti=1./3. SHAP 35
CALL CSHAPE(SsT»S1,T1sSHPs2511) SHAP 36
107 IF(NEL.LT.12) GO TO 200 SHAP 37
IF(IX(12).EQ.0) GO TO 200 SHAP 38
Sl=-1./3, SHAP 39
Ti=1. SHAP 40
CALL CSHAPE(SsT»S15T1sSHPs 1512) SHAP 41
Coive CORRECT CORNER NOBES SHAP 42
200 DO 210 I=1,4 SHAP 43
I1=1+4 SHAP 44
I2=1+8 SHAP 45
IF(I.EQ.1) I3=I+7 SHAP 46
IF(I.GT.1) I3=I+3 SHAP 47
IF(I.LT.4) I4=I+9 SHAP 48
IF(I.EQ.4) I4=I+5 SHAP 48
DO 210 J=1,3 SHAP 50
210 SHP(Js I)=SHP(Js I)=2./3.%(SHP(Js I1)+SHP(Js I2) )~1./3.%(SHP(J, I3) SHAP 51
~  +SHP(J>I4)) SHAP 52
RETURN SHAP 53
c END SHAP 54
SUBROUTINE CSHAPE(SsT»S15T1sSHPsKsL) CSHA 1
Casen SUPPLEMENTAL ROUTINE FOR THE SHAPE FUNCTIONS CSHA 2
DIMENSION SHP(3,12) CSHA 3
C=9./32. CSHA 4
GO TO (1,2),K CSHA S
1 SHP(1,L)=Cx(1.+T1*T)*(9,%51-2,#5-27 . *51*5*5) : CSHA 6
SHP (2, L)=C»T1%(1,-5%5)#(1.+3.%51%5) CSHA 7
SHP (35 L)=Cx (1. +TL1#T)%(1,-5%G)%(1.+9,%51%S5) CSHA 8
RETURN CSHA 8
2 SHP(1,L)=C%51%(1,~T=T)#(1.+8.%T1%T) CSHA 10
SHP(2,L.)=Cx(1.+51%S)* (8. *#T1-2.#T-27 . #T1*T*T) CSHA 11
SHP (3, L)=Cx(1.,+S1%S) % (1, ~T#T)# (1. +3.*T1*T) CSHA 12
RETURN CSHA 13
END CSHA 14

C
SUBROUTINE PMESH(IDLsXLs I¥s IDsX,F» JDIAGs NDFs NDMs NENs NKM) - PMES 1
Cxwses INPUT MESH DATA PMES 2
LOGICAL PRTsERR, PCOMP PMES 3
COMMON ~CTDATA/ 05 HEAD(20) » NUMNP» NUMEL » LAYER, NEQs IPR PMES 4
COMMON ~MTDATA/ RHO»VUU12,E1,E25G12, G135 G235 THK, HIDTH PMES 5
COMMON /LABELS/ PDIS(B)sA(B),BC(2),DI(E),CD(3)sFD(3) ' PMES 6
COiMMON 7EXDATAZ QLAHW(4) PMES 7
COMMON ~RODATA” UR, I1G5ND3 PMES 8
DIMENSION IDL(B)sXL(7)s IX(NENs 1), TD(NDF» 1)+ X(NDMs 1) PMES 8
~ F(NDF»1),DUM(1)»,WD(13)5 JDIAGC(L) PMES 10
DATA WD/4HCOORs 4HELEMs 4HMATE s 4HBOUNs 4HFORC» 4HROD » PMES 11
~ 4HEND » 4HPRINs 4HNOPRs 4HPAGE » 4HEXPE/ PMES 12
DATA BL-4HBLAN/s LIST/11/,PRT/.TRUE.” PMES 13
Coens INITIALIZE ARRAYS PMES 14
ERR = .FALSE. PMES 15
DO 501 I=1-4 PMES 16
501 QLAWH(I)=0. PMES 17
DO 502 MN=1,NUMNP PMES 18
DO 502 I=1,NDF PMES 1S
IDCISN)=0 PMES 20

FCI-NX=0. PMES 21




502
Covon
10

20

30
Couve
lo2

Covoo

200

201

202
207
203
204

205
206

Cl.l‘

CONTINUE
READ A CARD AND COMPARE WITH MACRO LIST
READ(S, 1000) CC
DO 20 I=1,LIST
IF (PCOMP(CC,WD(I))) GO TO 30
GO 10 10
GO TO (1,2535455565758535 11512351
NODAL COORDINATE DATA INPUT
BO 102 N=1,NUMNP
X(1,N)= BL
CALL GENUEC(NDMs XLsX» CDs PRTs ERR)
GO 710 10
ELEMENT DATA INPUT
L=0
DO 206 I=1,NUMELsSO
IF(PRT) WRITE(Bs2001) 0,HEADs (KsK=1,NEN)
J = MINOCNUMEL, I+49)
DO 206 N=IsJ
IF(L~N) 200,202,203
READ(S, 1001) Lo (IDL(K)sK=1,NEN)sLX
IF(L.EQ.0) L=NUMEL+I
IF(LX.EQ.0) Lx=1
IF(L-N) 201,202,203
WRITE(G,3001) LsN

ERR = .TRUE.
GO TO 206
NX = LX

DO 207 K=1,NEN
IX(K,L) = IDLC(K)
GO TO 205
IX(NENsN) = IX(NENsN-1)
DO 204 K=1,NEN
IX(KsN) = IX(KsN-1) + NX
IF(IX(KsN-1).EQ.0) IX(KsN) =0
IF(PRT) WRITE(E,2002) Ns (IX(K,N)sK=1,NEN)
CONTINUE
GO TO 10
MATERIAL DATA INPUT
WRITE(6,2004) 0,HEARD
CALL MATLIB
GO TO 10
READ IN THE RESTRAINT CONDITIONS FOR EACH NODE

4 IF(PRT) WRITE(B,2000) OsHEAD, (I,BCsI=1,NDF)

420

41
42

43
S0
46

47
48

Covoe

Coven
Couoe

N=20
NG =0
L =N
LG = NG
READ(5,1001) N»NGs IDL
IF(N.LE.0 .OR. N.GT.NUMNP) GO TO 50
DO 41 I=1,NDF
IDCISN) = IDL(I)
IF(L.NE.O .AND. IDL(I).EQ.0 .AND. IDCI,L).LT.0) IDCI,N)=-1
LG = ISIGN(LGsN-L)
L = L+LG
IFC((N-L)*LG .LE. 0) GO TO 420
DO 43 I=1,NDF
IFCID(I,L-LG)Y .LT. 0) IDCIsL) = -1
GO TO 42
DO 48 N=1,NUMNP
DO 46 I=1,NDF
IFCIDCI,NY .NE. 0) GO TO 47
GO TO 48
IF(PRT) WRITE(B,2007) Ny (IDCIsN)sI=1,NDF)
CONTINUE
GO 70 10
FORCE/DISPL DATA INPUT
CALL GENUEC(NDF»XLsF»FD, PRTsERR)
GO TO 10
END OF MESH DATA INPUT
COMPUTE THE PROFILE OF GLOBLE ARRAYS
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7 IF(ERR) STOP
CALL PROFIL(JDIAG, IDs IX,NDFsNENs NKMs PRT)
RETURN
Coovo PRINT OFTION
8 PRT = .TRUE.
GO TO 10
Covwus NOPRINT OPTION
3 PRT = .FALSE.
GO 70 10
Civon READ IN PAPER EJECTION OPTION
11 READ(5,1000) O
GO TO 10
Coove INPUT EXPERIMENTAL INDENTATION LAW
12 READ(5,1007) (ALAWCI),»I=1,4)
WRITE(B,2008) 0sHEADs (ALAW(I), I=154)
GO TO 10
Coven INPUT INITIAL IMPACT CONDITION
6 WRITE(B,2009) 0sHEAD
READ(5, 1002) NB» INDF,UR
WRITE(G,2010) NG@» INDF,UR
FCINDFsNQ)=1.0
1Q=IDCINDFsNG)
GO TO 10
Cevve INPUT/0OUTPUT FORMATS
1000 FORMAT(A4, 75Xs A1)
1001 FORMAT(16I5)
1002 FORMAT(2I5,F10.0)
1007 FORMAT(4F10.0)

2000 FORMAT(AL»20A4//5%s 10HNODAL B.C.s 7X//6Xs SHNODE  » S(I7sA4, A2)/1X)

2001 FORMATC(AL,20A4//5%s BHELEMENTS//3Xs 7HELEMENT,
~ 14(I3,5H NODE)~/ (20X, 14(13,5H NODE)))
2002 FORMAT(I10,14I8/(10X,1418))
2004 FORMAT(AL,20A4//5%Xs 1SHMATERIAL PROPERTIES)
2007 FORMAT(I10,9I13)
2008 FORMAT (A1, 20A4/ /5%, #EXPERIMENTAL INDENTATION LAW#A/~

1 10%s #CONTACT COEFFICIENTS #El2.4/
2 10X, #CRITICAL INBENTATION: # El2.4/
3 10X, #CONSTANT S # Ele.4/
4 10%, #POMER INDEX OF UNLOADING LAH:# F12.3) .

3001 FORMAT(SXs 26H*=PMESH ERROR 01%# ELEMENT, IS,
~ 22H AFPEARS AFTER ELEMENT, I5)
2009 FORMATC(AL,20R4,//5Xs #IMPACT OF LAMINATED PLATE#}

2010 FORMAT(/~/10X,=IMPACT NODAL POINT: # 110/
~ 10X, #IMPACT D.0.F.¢ #5110/
~ 10X, #ZINITIAL IMPACT UELBCITY:#El2.4)

END
C

SUBROUTINE GENUEC(NDM, XL s Xy CD> PRTsERR)
Coessex GENERATE REAL DATA ARRAYS BY LINEAR INTERPOLATION

LOGICAL PRTsERR>PCOMP
COMMON ~CTDATA/ 0»HEAD(20) s NUMNP» NUMEL » LAYERs NEQs IPR
DIMENSION X(NDM>1),XL(7)5,CD(3)
DATA BL/4HBLAN/
N=0
NG=0

102 L=N
LG=NG
READ(S5, 1000) Ns NG XL
IF(N.LE.0 .OR. N.GT.NUMNP) GO TO 108
DO 103 I=1,NDM

103 X(I,N)=XL(I)
IF(LG) 104,102,104

104 LG=ISIGN(LGsN-L)
LI=C(IABS(N-L+LG)-1)/IABS(LEG)
DO 105 I=1,NDM

105 XL(I)=(X(I,N)-X(IsL)) /LI

106 L=L+LG
IFC(N-L)=LG LE. 0) GO TO 102
IF(L.LE.O .OR. L.GT.NUMNP) GO TO 110
BO 107 I=1,NDM
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107 X(I,L)=X(IsL-LG)+XL(I)
GO 7O 106
110 WRITE(6,3000) L, (CD(I)»I=1,3)
ERR = .TRUE.
GO TO 102
108 DO 109 I=1,NUMNP,S50
IF (PRT) WRITE(B,2000)0,HEAD, (CD(L)sL=1,3), (LsCD(1),CD(23,L=1,NDM
N = MINOCNUMNP, I+49)
DO 108 J=I,N
IF(PCOMP(%(15J)5BL) .AND. PRT) WRITE(E,2008) N
109 IF(.NOT.PCOMP(X(1sJ)sBL).AND.PRT) WRITE(B,2009) Js (X(LsJ3,L=1,NDM)
RETURN
1000 FORMAT(2I5,7F10.0)
2000 FORMAT(ALs20A4/ /5%, SHNODAL, 34/ /BXs 4HNODE, S(I75A45A2))
2008 FORMAT(5X» 21H=*GENUEC WARNING 0133, 110,
~  3PH HAS NOT BEEN INPUT OR GENERATED)
2009 FORMAT(I1059F13.4)
3000 FORMAT (5%, 44H#=GENVEC ERROR 01#*ATTEMPT TO GENETATE NODE, IS,
1 3H INs3a4)
END

SUBROUTINE PROFIL(JDIAG, IDs IXs NDF s NENs NKMs PRT)
Caesesean COMPUTE PROFILE OF GLOBAL ARRAYS
LOGICAL PRT
COMMON ~CTDATA” 0, HEAD(20), NUMNP, NUMEL s LAYER, NE@, IPR
DIMENSION JDIAGC1)s IDCNDF, 135 IX(NEN, 1),EQ(2)
DATA EQ/4H DOF,2H. 7
Ceooo SET UP THE EQUATION NUMBERS
NEQ =0
DO 50 N=1,NUMNP
DO 40 I=1,NDF
J = ID(I,N)
IF(J) 30,20,30
20 NEQ = NEQ + 1
IDCIL,N) = NEQ
JDIAG(NEQ) =0
GO TO 40
30 IDCIL,N) =0
40 CONTINUE
50 CONTINUE
IF(,NOT.PRT) GO TO 70
WRITE(S,2000) 0»HEAD, (I,EQs I=1,NDF)-
DO B0 I=1,NUMNP
60 WRITE(6,2001) I,{(ID(KsI)sK=1,NDF)
Cosoo COMPUTE COLUMN HEIGHTS
70 DO 500 N=1.NUMEL
DO 400 I=1,NEN
IT = IX(IsN)
IF(II .EQ. 0) GO TO 400
DO 300 K=1,NDF
KK = ID(KsII)
IF(KK.EQ.0) GO TO 300
DO 200 J=IsNEN
JJ = IX(JsN)
IF(JJ.EQ.0) GO TO 200
DO 100 L=1,NDF
LL = ID(LsJJ)
IF(LL.EQ.0) GO TO 100
M = MAXOC(KKsLL)
JDIAG(M) = MAXOC(JDIAG(M)s IABS(KK-LL))
100 CONTINUE
200 CONTINUE
300 CONTINUE
400 CONTINUE
500 CONTINUE

Cevnn COMPUTE DIAGONAL POINTERS FOR PROFILE
NKM = 1
JDIAG(L) = 1

IF(NEQ.EB.1) RETURN
DO 600 N=2,NEQ
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600 JDIAG(N) = JDIAG(N) + JDIAG(N-1) + 1 PROF 50
NKM = JDIAG(NEQ) PROF 51
2000 FORMAT(AL,20A4/ /5%, IEHEQUATION NUMBERS//EX,SHNODE » PROF 52
~  9(I5A45,A2)/1X) PROF 53
2001 FORMAT(IL10,31I11) PROF 54
RETURN PROF 55
END PROF 56

c
SUBROUTINE MATLIB MATL 1
Creseseis MATERIAL PROPERTIES ROUTINE MATL 2
COMMON ~CTDATA/ 0, HEAD(20)» NUMNP» NUMEL » LAYER, NEG, IPR MATL 3
COMMON ~/MTDATA- RHO,UU12,E1,E2,G12,G13,G23s THK, WIDTH MATL 4
COMMON ~COMPST/ ABD(656)5D5(2,2),ABR(353,25)5QBS(2:2,25)» MATL 5
~ TH(25) s ZK(25) MATL 6
COMMON ~DMATIX/ D(10),DB(B»6)s LINT MATL 7
DIMENSION WD(5) MATL 8
DATA WD/BH 1S0-,8H ORTHO, BHTROPIC,E6H COMP, BHOSITE 7 MATL 8
Ceseos INPUT MATERIAL PROPERTIES MATL 10
READ(5, 1000) L1,L25Ks THK, WIDTH MATL 11
READ(S, 1001) RHO,VU12,E1,E2,G125,G13, 623 MATL 12
DO 150 J=1,3 MATL 13
DD 150 I=1,3 MATL 14
IF(I.EQ.3 .OR. J.EQ.3) GO TO 150 MATL 15
BS(J>I) = 0. MATL 16
150 ABD(J,>I) = ABD(J+3,1I) = ABD(J, I+3) = ABD(J+3,I+3) = 0. MATL 17
L1 = MINO(4,MAX0C(L,L1)) MATL 18
B(1) = L1 MATL 18
L2 = MINO(4,MAXO0(1,L2)) MATL 20
D2y = L2 ‘ MATL 21
D3y =K MATL 22
LINT=0 MATL 23
IF(EL-E2) 12051105120 MATL 24
110 Gi2=E1/(2.%(1.+UU12)) MATL 25
Ji=1 $ J2=3 MATL 26
GO TO 200 ’ MATL 27
120 Ji=4 $ Je=5 MATL 28
IF(LAYER.EQ. 1) Ji=2 $ J2=3 MATL 28
200 WRITE(S,2000) LAYERs WD(J1),WD(J2), THK,EL»E2s G125 G135 G23,UU12, MATL 30
~ RHO,L1,L2sK MATL 31
CALL CMPD v MATL 32
RETURN MATL 33
Covoe FORMAT FOR INPUT-OUTPUT MATL 34
1000 FORMAT(3IS5>2F10.03 MATL 35
1001 FORMAT(7F10.0) MATL 36
2000 FORMAT(/5%s12,12H LAYER(S) OF»2A5,21H PLATE WITH THICKNESS, MATL 37
1 F10.4//10%s 15HYOUNG#S MODULUS, 10X, #E1=#,E10.4, 10X, #E2=#,E10.4/ MATL 38
2 10X, 1GHSHEAR  MODULUS, 9%, #G12=#, E10.45 9Xs #G13=#,E10.4, X, MATL 39
3 #623=7,E10.4/10%, 1SHPOISSON  RATIO0, 8K, #UU12=#,F5.3/10X, MATL 40
4 7HDENSITYs 17X #RHO=#,E10.4/10%, 13HGAUSS PTS/DIR, 12Xs #L1=#, IS5, MATL 41
5 5%, #L2=, 15/10K%s 12HSTRESS POINTs 14X, #K=#, 15/ MATL 42
END MATL 43

c
SUBRGUTINE CMPD CMPD 1
Crssese COMPUTE #ABD# MATRIX AND #DS# MATRIX CMPD 2
COMMON /CTDATAZ 0» HEAD(20) > NUMNPs NUMEL s LAYER, NEQs IPR CMPD 3
COMMON ~MTDATA~ RHO,VUL2,E1,E2,G12,G135623, THK, WIDTH CMPD 4
COMMON ~/CCMPST/ ABD(Bs6)5DS(2,2)50BR(3,3,25)5 BBS(25,2,25)» CMPD 5
~ TH(25)5 2K(25) CMPD 6
DIMENSICN B8(3,3),05(252), TK(Z5) cMPD 7
LL=LAYER CMPD 8
Mri=Ll+1 CMPD 9
REATI(5, 1000) (Lo THCL) s TKCL) s I=15LL) CMPD 10
ZK(1)=TTK=0.0 CMPD 11
DO 15 I=1,LL cMPD 12
TTK=TTK+TK(I) CMPD 13
ZKCI+1)=TK(I)+ZK(TI) CMPD 14
15 CONTINUE CHMPD 15
B0 25 I=1,M1 CMPD 16
ZK(I)=2ZK(I)-TTK/2, CMPD 17

25 CONTINUE CMPD 18
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DEL=4.*ATAN(1.},180. CMPD 1S

DEN = 1. - EexUUiR=w2/E] CHMPL 20

0(1.,1) = E1/DEN CHPD 21

G(2,2) = E2/DEN ChPL 22

Q(L,2) = QA2 1) = VU1R=0(2s2) ChPD 23

0(3,3) = Gl2 PD 24

Q1,3) = Q2,3 = 0(3,1) = A(3,2) = 0.0 Wi

@S(1,1) = G13

Qs2,2) = G23

ES(1,2) = BS(2s1) = 0.0

DO 40 I=1,LL

ANGL=TH(I)=DEL :

C=COS(ANGL) CMpD 5l

W=SIN(ANGL) CMPD

GBR(ly19I)=B(191)*C**4+29§(G(192)+2.%G(3y3))*(C*N)*%E+G(292)*H**4 CHPD &3

QBR( 1,2, 1)=0BR(2s 1, 1)=(AC1, 1)+0(2, 2)~4.=Q(35 3) )= (Cxl)#=2 cHPn 34
S +QCLs 2y (Weed +Ln%d ) CHPl Su

GBR(BonI)=E(19l)*N**4+2°*(G(192)+E.*Q(393))*(C*H)**2+G(292)* #xd CHMPD 0o
GBR(193PI)=GBR(391oI)=(G(191)—@(198)—2.*G(3,3))*H*C**3 + 14
$ (1, 2)-0(252)+2.3Q(3s 3) ) #Ceeldiex3

GBR(2, 3, I)=0BR(3s25 1)=(A(1, 1)-A(1,2)-2 (35 3) )3 #C+

$ (QC1s2)-0(2s 2342, %0(35 3) I ulnC:3

QBR(35 3> 1)=(A( 1, 14025 2) =2 #Q( 1, 2) -2, #Q(35 3) I (W=C)=*2+
] Q35 3y (Wesed +Cs4 ) cHPl A2
QBS(1,1,1) = QS(1, 1)=Cxud + Q5(2,2)xhxx2 CMPD 43
OBS(2,2: 1) = BS(1s )5l + QS(2,2)=Csx2 CHMPD 44
OR3(1,2,1) = OBS(2,1,1) = (BS(1,1)-05(252))=C*N CHPD 4%
40 CONTINUE CnrD 4b
DO 50 J=1,3 CHMPL 47
D0 50 K=1,3 ChPD 48
DO 50 I=1sLL CMPD 40
ABD(J K )= ABD(J sK )+BBR(Js Ky I)#(ZK(I+1)-ZK(I)) CHPD 50
ABD(J+3;K )= ABD(J sK+3)= ABD(J+3,K)I+BBR(J, K, I)* CHMPD 51
% (ZK(I+1)sup=-2ZK(1)=#2) /2. cMPD 52
ABD(J+35K+3)= ABD (J+35 K+3)+ABR(Js Ks 13 (ZK (I1+1)5#3-ZK(I)%%3} /3. CHpPR 52
50 CONTINUE CMPD 54
D0 55 I=1.6 CMPD 5%
DO 55 J=1,6 CHPL 58
IF(I.GE.3 .0OR. J.GE.3) GO TOD 55 CHPD 57
IFC(ABS(DS(I,J)) .LT. 1.E~08) DS(I,J)=0.0 CHMPD 58
55 IF(ABS(ABD(I,J)) .LT. 1.E-08) ABD(I,J)=0.0 CHMPD 59
WRITE(Bs2001) ((ABD(Is)»sJ=1,6),1=1,6) CMPD 690
DO 60 J=1,2 CMPD &1
DO 60 K=1s2 CHMPD B2
DO 60 I=1sLL CMPD B3
60 D5(JsK) = DS(JsK) + GBS(JsKs I)%(ZK(I+1)~ZK(I}) CMPD G4
WRITE(B,2002) ((DS(I,J)sJ=1,2)51=152) CHPD €5
1000 FORMAT(ISsF5.0,F10.0) CMPD €6
2001 FORMAT(//» 1X» 10HABD MATRIK//6(2X,BE13.4/)) CMPD &7
2002 FORMAT(/s 1Xs9HDS MATRIX//2(2Xs2E13.4/)) CMPD €8
RETUR CHMPD &9
c END CHMPD 70
SUBROUTINE KMLIB KMLI 1
Cesesese ASSEMBLE GLOBLE ARRAY KMLI 2
COMMON G(1> KMLYI 3
DIMENSION M(1) KMLI 4
FQUIVALENCE (G€1)sM(1)) KMLT 5
COMMON ~ISWIDX/ ISH KHMLI 6
COMMON ~CTDATA, 0, HERD(20) s NUMNP s NUMEL, LAYERs NEQs IPR KMLI 7
COMMON /L.ODATA/ NDF s NDMs NENs NSTs NKM KMLYI 8
COMMON ~PARATS/ NPAR(14),NEND KMLr 9
N1=NEND KMLI 10
N2=N1+NST*NST=IPR KMLT 11
IF(ISH.LE.2) NE=N2+NKM#IPR KHMLI 12
IFCISH.GT.2) NE=N2+NEDRIFR KMLT i3
CALL SETMEM(NE) KM.I 14
CALL PZERD(G(NEND)» NE-NEND) KMLI 15
CALL MASSOL(G(NPAR(1)) s> G(NPAR(2))» MINPAR(3))sGINPAR(4)), KMLI 16
1 M(NPAR(5) )» M(NPAR(B) ) s G(NPAR(7))» G(NPAR(8) ) s M(NPAR(S) )s KMLI 17
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G(NPAR(11)),G(N1)sG(N2)s NDF » NDMs NENs NST» NKM)
RETURN
END

SUBROUTINE MASSO04 (ULsXLsLDsPs IXs IDs XsFs JDOIAGs By Ss Ay NDF'» NDM» NEN»
NST» NKM)

FORM MASS MATRIX

COMMON ~CTDATA/ 0»HEAD(20) s NUMNP» NUMEL » LAVER, NEGy IPR

COMMON /MTDATA/ RHO,UU12,E1,E2,G12s G135 G235 THK, WIDTH

COMMON /DMATIX/ D(10),DB(Bs6)sLINT

COMMON /ELDATAZ Ns NEL,MCT

COMMON ~ISWIDX/ ISW

COMMON ~GRAUSSP/ SG(16),TG(18)sWG(1B)

DIMENSION ULC1)sXL(NDMs 1)5LD(NDFs1)sP(1)5s IX(NENs 1)5 ID(NDF» 1)
XC(NDMs 1) F (1), JDIAG(1)5B(1)5S(NST»1)5ACL), SHP(35 12)
LOCP ON ELEMENTS

DO 110 N=1,NUMEL

DO 10 I=1,NST

DO 10 J=1,NST

S(I,J=0.

SET UP LOCAL ARRAYS

CALL PFORM(ULsXLsLDs IXs IDs X5 Fs Bs NDF s NDMs NEN» ISW)
COMPUTE CONSISTENT MASS MATRIX

L = D(1)

CALl. PGAUSS(Ls LINT)

DO 500 L=1,LINT
COMPUTE SHAPE FUNCTIONS

CALL SHAPE(SGC(L)» TG(L) s XLs SHP» XSJs NDMs NELs IX, .FALSE.)

DU = UG(L)*XSJI#RHO=THK
FOR EACH NODE J COMPUTE DB=RHO%*SHAPE*DU

KL =1

L0 500 J=1,NEL

Wil = SHP(3, J)*DUY

W33 = W1lsTHK==2-12.

FOR EACH NODE K COMPUTE MASS MATRIX (UPPER TRIANGULAR PART)

Jl = K1

DD 510 K=J,NEL

S(J1l oK1 ) = S5(Jdl K1 ) + SHP(3,K)*Hil

S(J1+3,K1+3) = S(J1+3,K1+3) + SHP(3,K)=W33

Ji = J1 + NDF

K1 = K1 + NDF

COMPUTE MISSING PARTS AND LOWER PART BY SYMMETRY

NSEL. = NEL=NDF

DO 530 K=1,NSL,NDF

DO 520 J=KsNSLsNDF

S(JH+2:K+2) = S(J+1,K+1) = S(J K )
S(J+4,K+4) = S(J+3,K+3)

S(K sJ ) =50 K )

S(K+35 J*3) = S(J+3:,K+3)

S(K+2s J+2) = S(K+1,J+1) = S(J K )
S(K+4s J+4) = S(J+3:K+3)

CONTINUE

IF(ISW.EQ.2) GO TO 100
LUMPED MASS MATRIX

SuML = 0.0
SuUii2 = 0.0
SUMB1 = 0.0
SUMDR2 = 0.0

DO 540 I=1,NSL,NDF

SUMDL = SUMBDL + S(I,I)
SUMD2 = SUMD2 + S(I+35I+3)
DO 540 J=1,NSLsNDF

QUML = SUML + S(I,J)

suM2 = SUM2 + S(I+3,J+3)
0 550 I=1,NSL.NDF

P(I)y = S(I,I)=5UM1/SUMDL

P(I+2) = P(I+1) = P(I)
P(I+3) = S(I+3, I+3}%5UM2/5UMD2
P(I+4) = P(I+3)

ADD TN TOTAL ARRAY
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100
110

50

AW

Corsesexn

CALL ADDSTF (AsS» Ps JDIAGs LDs NST» NEL*NDF» .FALSE.D
CONTINUE

REWIND 2

IF(ISH.EQ.2) WRITE(2) (A(I)sI=1,NKM)
IF(ISK.EQ.3) WRITE(2) (ACI),I=1,NEQ@)

RETURN

END

SUBROUTINE RODIPCT

LOGICAL FLAG

COMMON G(1)

DIMENSION M(1)

FQUIVALENCE (G(1)5M(1))

COMMON /CTDATA/ 0, HEAD (20 » NUMNPs NUMEL s LAYER NEQ» IPR

COMMON ~LODATAZ/ NDFs NDMs NEN» NST» NKM

COMMON /PARATS/, NPAR(14)sNEND

COMMON ~RODATA/ URs 1@, NDS

COMMON ~/ROELEM- NERs NEGRs ER

DATA FLAG/,FALSE./s NER/20/,ER/30000000.”

IF(FLAG) GO 7O 50

NEQR=2% (NER+1)

NKMR=7*NER+3

N1=NEND

N2=N1+NEQ=IPR

N3=N2+NEG=IFR

NA=N3+NEQ=TPR

NS=N4+NKMR*=1PR

NE=N5+NEQR=IPR

N7=NS+NEAR

N8=N7+NEQR*IPR

NI9=NB8+NEBR#*IPR

N10=N3+NEQR*IPR

N11=N10+NEQR=IPR

NE=N11+NEQR=*IPR

CALL SETMEM(NE)

CALL PZERO(G(NEND)» NE-NEND)

FLAG=.TRUE,

CALL NIHPCT(G(NPRR(l)).G(NPAR(E)),M(NPQR(3))yG(NPQR(4))’
N(NPHR(S));N(NPRR(G))vG(NPﬁR(?)),G(NPQR(B)),
N(NPGR(S))»G(NPQR(IO))9G(NP9R(11)),G(Nl),G(NE);
G(N3).G(N4)»G(N5)9N(NB).G(N?),G(HB),G(HB);G(NlO),
G(NLIL))

RETURN

END

SUBROUTINE NIHPCT(UL;XL;LD;PsIX,IDstFanIﬁG,DR;U;B»U;ﬂvRK’RMv
~ JOR» RUs RUs RAs RBs FR)
SOLUE IMPACT PROBLEM

LOGICAL FLAGs TAN

COMMON G(1)

DIMENSION M(1)

EQUIVALENCE (G(1)sMC1))

COMMON /CTDBATAR/ 0, HEAD (20 s NUMNP s NUMEL » LAYERs NEQ» IPR

COMMON /TMDATR/ TIME, DT DDTs FORCEs ALPHA

COMMON ~LODATA/ NDF, NDMs NENs NST» NKM

COMMON /NITERS/ ITR

COMMON ~PARATS” NPAR(14)sNEND

COMMON /RODATAZ UR, IQ,NDS

COMMON /ROELEM/ NER»,NEGRsER

COMMON ~CONSTS”/ A0, A2, A4 ASs ABs AT ABs AREA

COMMON ~PROLOD/ PROP

COMMON ~ISHIDX/ ISW

COMMON Z/EXTRAS/ TAN

DIMENSION UL(l),XL(l),LD(l)pP(l),IX(1)9ID(1),X(1)»F(l),JDIﬂG(1)y
1 DR(l),U(l),B(1)9U(1)vﬂ(1),RK(l);RM(l).JDR(l),RU(l),

RUCL)sRA(1),RB(1),FR(1)5Q(3),QP(3)

DATA ITR/S/sFLQG/.FﬂLSE./9HIL/1°4/,INTE/E4/

IF(FLAG) GO TO 50

DO 1 I=1,3
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10

50

20

30

100
200

210

8001

G(I)=0.0

GP(I)=0.0

CONTINUE

ID5=1

TAN=.FALSE.

REWIND 2

READ(2) (B(I)sI=1,NED
FORCE=0.0

ALPHA=0.0

PROP=0.0

NNEQ@=NDF *NUMNP

A0=6./ (HIL#*DT)=x2
A2=6./ (WIL*DT)
A4=A0/NIL

AS=-A2/WIL
AG=1.-3./KHIL

A7=DT/2.

AB8=DDT~6.

CALL FORMROD(RK»,RM», JDR)
DO 10 I=1,NEOR
RUCII=-UR

A(2)=-UR

FLAG=. TRUE.

ISH=5

IF(IDS.EQ.NDS) TAN=.TRUE.

CALL FSTREACULsXL»LDsPsIXs IDy Xy F» JDIAGs DRy Us NDFs NDMs NENs NST» NNEQ)

DO 20 I=1,NEQ

ACI)=DR(I)/B(I)

UCI)=UCI)+DT+A(I)

UCI)=UCI)+DT#U(I)

CONTINUE

GP(1)=UCI)

AP (2)=u(Il)

GP(3)=ACIR)

DO 30 I=1,NEGR
RB(I)=RM(I}*(AO*RUCI)+A2#RU(I)+2.*RA(I))
CONTINUE
RBIQ=RU(1)+DT=RU(1)+DDT/3.#RA(L1)
ROT=0.,000001

IC0OVU=0

DO 100 IT=1,ITR

RUT=RBIQ+Q(3)=DDT/B.

AF=-RUT-GP (1)

CALL RODLOAD(FIQ,AF)

DO tio I=1,NEGR

FR(I)=RB(I)

CONTINUE
FRC1)=FR(1)+(1.-HIL)*FORCE+WIL=FIQ

CALL ACTCOL(RKsFRs JDRy NEQRs .FALSE.s . TRUE.»0)
QC2)=A4=(FR(1I-RU(1)I+AS=RU(1)+AB*RA(1)
RUTT=RBIG+Q(3)+*DDT/6.

ROTR=ABS( (RUTT-RUT)I/RUTT)
IF(ROTR.LT.ROT) ICOU=1

IF(ICOV.GT.0) GO TO 200

CONTINUE

DO 210 I=1,NzOR
FR(ID)=A4s(FR(I)I-RUCI)I+AS*RU(T)+AB*RACT)
RUCII=RUCI)+DT=RU(I)+AB*(FR(I)+2.*RA(I))
RUCII=RUCI}+A7:(FR(I)+RACI))

RACI)=FR(I)}

CONTINUE

QCL)=RUCL

@e)=RuUC1)

G(3)=RA(1)

FORCE=FIQ

PROP=FORCE

ALPHA=-Q(1)-GP(1)

RODFR=RU(INTE)*AREAXER

WRITE(8,8001) FORCEsALPHAs RODFRs (Q(I)5I=1,3)
FORMAT(BE12.4)
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100

20

10

IDS=IDS+1
IFC(IDS.GT.NDS) IDS=1
TAN=.FALSE.

RETURN

END

SUBROUTINE FORMROD(RKsRM»JDR)
FORM STIFFNESS AND MASS MATRICES. OF ROD

COMMON /RODATAR URs IQ,NDS

COMMON /ROELEM/ NER,NEGRsER

COMMON /CONSTS/ A0s A2s Ad» A5, ABs A7 ASs AREA

DIMENSION RK(1),RM(1)sJBR(2),D(E)

DATA RHOR/.0003225/»RL/1.07

DATA D/.225 .365 . 435 . 485 . 505 .6257

EL=RL~-NER

PAI=4.=ATAN(1.)

JOR(1)=1

JOR(2)=3

DO 100 I=1,NER

IF(I.LT.B) A=PAI=(D(I)/2,)sx2

IF(I.GE.B) A=PAI#(D(B)/2.)%%2

TT=A%ER/30./EL

Ji=2%(I+1)~1

J2=Ji1+1

JiMl=J1-1

JiM2a=Ji-2

JOR(J1)=JDR(JIML1)+3

JDR(J2)=JDR(J1)+4

K1=JDR(J1M2)

Ke=JDR(J1Mi)-1

RK(K1 )=RK(K1 )+TT=36.

RK(K2 )=RK(K2 J>+TT*3.%EL

RK (K2+1)=RK(K2+1)+TT#4, *EL=%2

RK(K2+2)=RK(K2+2)-TT%36.

RK(K2+3)=RK(K2+3)-TT*3, #EL

RK(K2+4)=RK(K2+4)+TT=36.

RK(K2+5)=RK(K2+5)+TT=3. =EL

RK (K2+86)=RK (K2+6)—1 TELs#2

RK(K2+7)=RK(K2+7)-TT%3. =EL

RK (K2+8)=RK (K2+8)+TTx4, *EL%*2

TT=RHOR=A=EL

L1=2%#I~-1

RMCL1 )=RM(L1 )+TT/2.

RM(L1+1)=RM(L1+1)+TT=EL%=2,420.

RM(L1+2)=RM(L1+2)+TT/2.

RM(L1+3)=RM(L1+3)+TT=EL*%2,420.

CONTINUE

AREA=A

DO 20 I=1,NEGR

J=JDR(I)

RK(J)=RK(J)+AB=RM(I)

CALL ACTCOL (RKsRMs JORs NEQRs « TRUE . » .FALSE.»0)

RETURN

END

SUBROUTINE RODLOAD(F,AF)
COMPUTE CONTACT LOADING
LOGICAL RELDsUNLD,PIL
COMMON ~TMDATA/ TIME,DT,DDTs FORCE, ALPHA
COMMON /EXDATA~ Q(4)
DATA UNLD/.FALSE./sPIL/.FALSE./sRELD/.FALSE.”
IF(PIL) GO TO 10
AMAX=AMIN=FMAX=0.0
PIL=.TRUE.
IF(RELD) GO TO 50
IFC(UNLD) GO TO 20
F=Q(1)#AF*x*1.5
IF(F.CGE.FORCE) RETURN
UNLD=. TRUE.
AMAX=ALPHA
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20

50

30

FMAX=FORCE

IF(AMAX.GT.Q(2)) UK=FMAX/((1.-Q(3)I*AMAX+A(2)*Q(3)I**Q(4)
IF(AMAX.LE.Q(2)) UK=FMAX/AMAX*=3(4)
AMIN=Q(3)=(AMAX-Q(2))
IFC(AMIN.LT.0.) AMIN=0.0
IF(AF.LE.AMIN) GO TO 30

F=UKs (AF-AMIN) #=Q(4)

IF(F.LT.FORCE) RETURN

ELD=, TRUE.

RK=FMAX/ (AMAX—-AMIN) #%1.5
IF(AF.LE.AMIN) GO TO 30
F=RK=(AF~AMIN) 1.5

RETURN

F=0.0

RETURN

END
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